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A B S T R A C T   

Elevated [CO2] can increase rice biomass and yield, but the degree of this increase varies substantially among 
cultivars. Little is known about the gene loci involved in the acclimation and adaptation to elevated [CO2] in rice. 
Here, we report on a T-DNA insertion mutant in japonica rice exhibiting a significantly enhanced response to 
elevated [CO2] compared with the wild type (WT). The root biomass response of the mutant was higher than that 
of the WT, and this manifested in the number of adventitious roots, the average diameter of roots, and total root 
length. Furthermore, coarse roots (>0.6 mm) and thin lateral roots (<0.2 mm) were more responsive to elevated 
[CO2] in the mutant. When exposed to lower light intensity, however, the response of the mutant to elevated 
[CO2] was not superior to that of the WT, indicating that the high response of the mutant under elevated [CO2] 
was dependent on light intensity. The T-DNA insertion site was located in the promoter region of the OsGF14b 
gene, and insertion resulted in a significant decrease in OsGF14b expression. Our results indicate that knockout of 
OsGF14b may improve the response to elevated [CO2] in rice by enhancing carbon allocation to coarse roots and 
to fine lateral roots.   

1. Introduction 

Since the industrial revolution, the atmospheric CO2 concentration 
has risen to exceed 400 μmol mol−1 in 2017 (Dlugokencky and Tans, 
2018), and is expected to continue to increase and may well exceed 
values of 700 μmol mol−1 by 2100 (Coskun et al., 2016; Thompson et al., 
2017). As the substrate for photosynthesis in crops, CO2 has a funda-
mental impact on crop growth and development and on nearly all 
physiological and biochemical processes (Kim et al., 2001; Zhang et al., 
2015). As the world’s human population is expected to reach ten billion 
people by 2050, to ensure food security, it is crucial to better understand 
crop growth responses to elevated [CO2], an understanding critical to 
help breeders improve crop germplasm resources that can be deployed 
in response to climate change. 

Rice (Oryza sativa L.) is a major staple food crop for more than half of 

the world’s population (Min et al., 2021). In response to elevated [CO2], 
rice yield improves as a consequence of increased plant growth, tiller 
number, and leaf area (Ainsworth et al., 2008; Kim et al., 2001; Zhu 
et al., 2013). In addition to the direct effects of CO2 on leaf photosyn-
thesis, the root system also shows a dramatic response to elevated [CO2], 
however (Thompson et al., 2017; Wu et al., 2018). A positive relation-
ship has been reported between root dry matter and crop N uptake in the 
rice cultivar Akitakomachi under free-air CO2 enrichment (FACE) con-
ditions (Kim et al., 2001). Using four rice cultivars, Zhu et al. (2013) 
found that root biomass (instead of root number) and bending strength 
were increased by 12–38% under elevated [CO2]. Root branching, root 
length, and root diameter are the three key determinants of root surface 
area, which, in turn, is critical to nutrient uptake (Atkinson et al., 2014; 
Di et al., 2021; Li et al., 2015). Elevated [CO2] has been reported to exert 
positive effects on all three components (Day et al., 1996; Jongen et al., 
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1995). When CO2 supply is sufficient, light intensity can become 
limiting to photosynthesis and is known to affect plant morphology 
profoundly (Hubbart et al., 2012). However, root morphological 
changes under elevated [CO2] have not been studied in detail. 

At the physiological and biochemical levels, CO2 enrichment pro-
duces significant effects on leaf photosynthesis, carbohydrate transport, 
and protein phosphorylation (Ainsworth et al., 2004; Dineshram et al., 
2013; Long et al., 2004; Zhu et al., 2014). Recent studies have explored 
the molecular mechanisms involved in plant adaptation to elevated 
[CO2]. Few genes have been successfully and specifically implicated in 
the response to elevated [CO2] in crops, including rice, however. Kanno 
et al. (2017) reported a small decrease in Rubisco content, achieved by 
suppressing the RBCS multigene family, can lead to increases in 
photosynthesis and biomass deposition at elevated [CO2]. In addition, 
OsRab6a, which encodes a small GTPase, is involved in the regulation of 
rice growth, grain yield, and accumulation of iron in response to 
elevated [CO2] (Yang et al., 2020). The G protein γ subunit qPE9-1 is also 
associated with rice adaptation to elevated [CO2] by regulating leaf 
photosynthesis (Wang et al., 2021). Despite several of these associations, 
the key genetic locus governing the rice root response under elevated 
[CO2] needs to as yet be identified, and its identification could pave the 
way to improving crop yield responses to elevated [CO2] through ge-
netic manipulation. 

It is well established that 14-3-3 proteins take part in root growth and 
several key physiological roots processes, including carbon and nitrogen 
uptake and utilization and proton-flow dynamics that govern root 
growth (Comparot et al., 2003; Sato et al., 2011; Schoonheim et al., 
2007; Wang et al., 2014, 2016). Some studies have shown that 14-3-3 
proteins can target sucrose phosphate synthase (SPS) and adjust its ac-
tivity (Bornke, 2005; Schoonheim et al., 2007). In Arabidopsis, 14-3-3 
proteins play important roles in root growth (Mayfield et al., 2012). In 
barley, the small subunit of Rubisco has also been reported as a target of 
a 14-3-3 protein in barley (Schoonheim et al., 2007). The OsGF14b gene 
belongs to the rice 14-3-3 protein family, which is comprised of eight 
members. It was previously reported that OsGF14b plays varying roles in 
panicle and leaf blast resistance (Liu et al., 2016), and functions in rice 
drought and osmotic resistance have also been demonstrated (Liu et al., 
2019). In addition, OsGF14b can induce the expression of 
IAA-synthesis-related proteins (Yan et al., 2021). 

In this study, we identified a rice mutant with the potential for a 
strong response to elevated [CO2]. The objectives of our study were: (1) 
to investigate the mutation site and gene expression status in this 
mutant; (2) to characterize the shoot and root response to elevated 
[CO2] in the mutant; (3) to examine the root system attributes respon-
sible for the CO2 enhancement; and (4) to clarify the relationship be-
tween the root system response and ambient light intensity. The 
exploration of these mechanisms is essential for the establishment of a 
theoretical basis for rice’s carbon-use efficiency and its yield response 
under elevated [CO2]. 

2. Material and methods 

2.1. Plant material and growth conditions 

The WT japonica rice line, Dongjin, and a series of T-DNA insertion 
lines were purchased from the mutant library of the Crop Biotech 
Institute, Department of Plant Systems Biotech, Kyung Hee University, 
Republic of Korea (http://cbi.khu.ac.kr/RISD_DB.html). Through 
screening, a rice mutant line with the potential for a strong response to 
elevated [CO2] was obtained. Hydroponic experiments were carried out 
in two controlled-environment chambers with adjustable CO2 concen-
tration. Each chamber was equipped with an infrared CO2 sensor, 
capable of passing the CO2 concentration signal to a central controller to 
adjust the CO2 concentration in the chamber. The chamber was con-
nected to a CO2 gas cylinder. For the experiment, the CO2 concentration 
in the two incubators was 380 ppm (control) and 760 ppm (treatment), 

respectively. Photoperiod was set to 12 h day/12 h night, relative hu-
midity was set to 80%, and temperature was set to 30 ◦C day/25 ◦C 
night. The hydroponic nutrient solution was prepared and modified 
referring to the formula developed by the International Rice Research 
Institute (IRRI). The composition of the nutrient solution was as follows: 
1.25 mM NH4NO3,0.3 mM KH2PO4,0.35 mM K2SO4,1 mM 
CaCl2⋅2H2O,1 mM MgSO4⋅7H2O,0.5 mM Na2SiO3⋅9H2O,9 μM 
MnCl2⋅4H2O,0.39 μM Na2MoO4⋅2H2O, 20 μM H3BO3,0.77 μM 
ZnSO4⋅7H2O,0.32 μM CuSO4⋅5H2O, 20 μM EDTA-Fe (FeSO4⋅7H2O +
Na2-EDTA). Seedlings were placed in 2-L hydroponic tanks, with four 
plants per tank, and were maintained in the controlled-environment 
chambers for two weeks. 

2.2. Sample handling and collection 

Seeds of uniform size were selected and disinfected with 10% H2O2 
for 30 min, washed five times with deionized water, soaked in deionized 
water at 30 ◦C for one day, and germination occurred in darkness for 48 
h. The germinated seeds were selected and planted. After three days of 
culture in one-fourth strength nutrient solution, and seven days of cul-
ture in half-strength nutrient solution, seedlings of identical height were 
selected and treated in different chambers. The full-strength nutrient 
solution was replaced every two days during the treatment lasting for 
two weeks. Samples were collected and divided into shoots and roots. 
Shoot samples were heated at 105 ◦C for 30 min and then dried at 80 ◦C 
for dry weight measurement. Root samples were measured for dry 
weight following root morphology analysis. The root morphology was 
scanned with a root scanner, and data were analyzed with the root 
analysis software WinRHIZO 2012 (Chen et al., 2020). The light source 
was metal halogen lamp and high pressure sodium lamp to form a 
balanced plant growth spectrum (PERCIVAL, USA). Light treatment was 
carried out with normal and with lowered light intensities. The light 
intensity at plant height was approximately 1200 μmol m−2 s−1 and 170 
μmol m−2 s−1, respectively. For determination of relative expression of 
the OsGF14b gene in different tissues, samples were collected at different 
periods of plant growth. Roots, younger leaves, and stems were collected 
from seedlings at two weeks, old leaves, younger panicles, and panicles 
during the flowering period were collected from the booting stage to the 
flowering stage. Samples were placed in liquid nitrogen immediately 
after collection and then frozen in a −80 ◦C freezer for use. 

2.3. Identification of insertion sites and quantitative PCR 

Since T-DNA insertion mutants had long fragment insertions, 
amplification of normal-size fragments was only possible in the wild 
type. For the mutant, primers were designed on one or both sides of the 
boundary of the insertion vector, and on both sides of the original 
genome insertion site. Amplification of the band containing a fragment 
from the vector is thus possible for the mutant, while, for the WT, 
amplification of the band did not occur as there was no inserted frag-
ment present. The primers for identification were: LP-2, ATTTTGCCA-
GACGTTTGTCC, RP-2, AGCAAACATGGACCAGAACC, Tail-R1, 
ATGGAACTCACCTGGTACCTGG. Total RNA was isolated with the Total 
plant RNA rapid extraction kit (Sangon Biotech Co., Ltd, Shanghai, 
China). ChamQ SYBR qPCR Master Mix (Vazyme Biotech Co., Ltd, 
Nanjing, China) was used in real-time quantitative PCR. The primers for 
qPCR were: Ubiqitin-F, CGCAAGTACAACCAGGACAAGATG, Ubiqitin-R, 
CCAGGGAGATAACAACGGAAGC, P1–F, CCTGAGCGAGGAGTCC TACA, 
P1-R, CTGATCTCT TCCGCGGTGTC. 

2.4. Data processing 

Analysis of variance was performed for all data using EXCEL2016 
and SPSS analysis software. Real-time quantitative PCR data were 
analyzed according to the method proposed by Pfaffl et al. (Pfaffl, 2001). 
Sigmaplot 12.5 was used for plot generation. 
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3. Results 

3.1. The mutant is a homozygous T-DNA insertion mutant 

In order to explore the mechanisms of the response to elevated 
[CO2], we screened a series of T-DNA insertion lines under elevated 
[CO2] conditions, and identified a rice mutant with the potential for a 
strong response to elevated [CO2]. To investigate whether the mutant 
was homozygous, we first used the primers designed from the genome 
and the broader of the T-DNA fragments, LP-2, RP-2 and Tail-R1 
(Fig. 1A). As shown in Fig. 1B, the WT had a fragment amplified by 
primers LP-2 and RP-2 (line 2), while the mutant possessed a fragment 
amplified by primers Tail-R1 and RP-2 (line 3, 5, 7), indicating that the 
mutant is indeed homozygous. The BLAST results showed that the T- 
DNA fragment was inserted in the site approximately 750bp outside the 
first exon of the genome, the promoter region. The Os04g0462500 gene 
identified here, named OsGF14b, contained five exons and four introns, 
and is a member of the 14-3-3 protein family in rice. Compared with the 
expression level in the WT, the mutant showed a 90% lower expression 
level of OsGF14b (Fig. 1C), indicating that the insertion significantly 
suppressed the expression of this gene. 

To understand how OsGF14b is regulated, the expression of OsGF14b 
was investigated in different tissues of the WT under normal growth 
conditions. As shown in Fig. 2, the highest expression was observed in 
the stem, with considerable expression in roots and younger panicles, 
and the lowest expression in the panicle during the flowering period. 

3.2. Root biomass of the mutant is more responsive to elevated [CO2] 

In general, the mutant showed better growth compared to the WT 
(Fig. 3A and B). In comparison to control [CO2] conditions, the response 
of the shoot biomass of the mutant to elevated [CO2] was significantly 
stronger than that of the WT, with an increase of 33.3% in the WT and of 
53.3% in the mutant (Fig. 3C). For root biomass, the difference was more 
pronounced under elevated [CO2], with an increase of 69.9% in the 
mutant and 42.1% in the WT (Fig. 3D). 

3.3. Root architecture of the mutant is more responsive under increased 
[CO2] 

The root morphological characteristics, such as the numbers of 

adventitious roots and root thickness, were further examined to probe 
the nature of the increase in root biomass. In comparison to the increase 
of 16.4% in the WT under elevated [CO2], the mutant showed a higher 
increase of 46.2% in the number of adventitious roots (Fig. 4A). The 
mean root diameter of the mutant also increased 58.3% under elevated 
[CO2], while that of the WT increased by 32.6% (Fig. 4B). The results 
show a better response in the mutant in terms of the number of adven-
titious roots and root thickness under elevated [CO2]. 

In addition, the root surface area of the WT increased by 32.8% 
under increased [CO2], while that of the mutant showed a more sub-
stantial increase of 47.3% (Fig. 5A). Compared with control [CO2] 
conditions, the stimulation of the root volume was also larger in the 
mutant (increase by 75.0%), than in the WT (increase by 57.9%) under 
elevated [CO2] (Fig. 5B). This change in root surface area was then also 
reflected in the total root length, which significantly increased under 
elevated [CO2], with an enhancement of 28.4% in the mutant and 13.3% 
in the WT (Fig. 3D). 

Fig. 1. T-DNA insertion location (A), Identification of insertion (B) and Relative expression of the OsGF14b gene in the WT and the mutant (C) ( 
B) Line 1: Marker; Line 2: the WT DNA was amplified by LP-2 and RP-2; Line 3, 5, 7: the mutant DNA was amplified by Tail-R1 and RP-2; Line 4, 6, 8: the mutant DNA 
was amplified by LP-2 and RP-2. Error bars indicate ± SD. 

Fig. 2. Relative expression of the OsGF14b gene in different tissues of the WT 
The gene expression in roots (R), old leaves (OL), younger leaves (YL), stems 
(S), younger panicles (P4, P6, and P16, respectively, refer to panicle lengths of 
4 cm, 6 cm, and 16 cm), and panicles during the flowering period (F). Error bars 
indicate ± SD. 
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3.4. Root lengths in roots of different root diameters show different 
responses 

Considering the characteristics of the fibrous root system in rice, the 
response of root lengths in roots of different diameters was further 
studied. Different responses to elevated [CO2] were observed among 
root lengths of different diameters. In roots with a diameter of 0–0.2 
mm, the mutant showed an increase of 23.2% in root length under 
elevated [CO2], whereas no significant response was observed in the WT 
(Fig. 6A and S1). By contrast, the root lengths with diameters of 0.2–0.4 
mm and 0.4–0.6 mm in the WT increased by 26.5% and 24.8% under 
elevated [CO2], respectively, while the mutant showed no significant 
response (Fig. 6B and C). For the larger diameters of 0.6–0.8 mm and 
0.8–1.0 mm, the responses of the mutant were significantly stronger 

than the WT under elevated [CO2], with 33.8% in the WT and 56.7% in 
the mutant for the 0.6–0.8 mm diameter group, and 68.4% in the WT 
and 98.3% in the mutant for the 0.8–1.0 mm diameter group (Fig. 6D 
and E). The proportional breakdown of the root-length responses for the 
different diameter groups to elevated [CO2] is shown in Fig. 7. Pro-
portions in the mutant were significantly larger than WT in the 0–0.2 
mm, 0.6–0.8 mm and 0.8–1.0 mm groups, while they were smaller in the 
0.2–0.4 mm and 0.4–0.6 mm groups. 

3.5. The strong response of the mutant under elevated [CO2] was closely 
related to light intensity 

Since light intensity is a key determinant to photosynthetic capacity 
in addition to [CO2], a study at a weaker light intensity of 170 μmol m−2 

Fig. 3. Response to elevated [CO2] of the WT and 
the mutant 
WT-A: WT at control [CO2]; WT-E: WT at elevated 
[CO2]. Mutant-A: mutant at control [CO2]; mutant- 
E: mutant at elevated [CO2]. Asterisks indicate 
significant differences between two levels of CO2 
concentration. The percentages following asterisks 
are calculated as (E–A)/A. The percentages span-
ning between the two percentages indicate the 
differences between the latter and the former. *P 
< 0.05; bars are ± SD.   

Fig. 4. Response of root architecture in the WT 
and the mutant at elevated [CO2] 
WT-A: WT at control [CO2]; WT-E: WT at elevated 
[CO2]. Mutant-A: mutant at control [CO2]; mutant- 
E: mutant at elevated [CO2]. Asterisks indicate 
significant differences between two levels of CO2 
concentration. The percentages are calculated as 
(E–A)/A. The percentages spanning between the 
two percentages indicate the differences between 
the latter and the former. *P < 0.05; bars are ± SD.   
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s−1 was also conducted. In contrast to the higher root and shoot response 
of the mutant than the WT to elevated [CO2] seen at 1200 μmol m−2 s−1 

(Fig. 3C and D), both shoot and root of the WT responded more pro-
nouncedly than that of the mutant under elevated [CO2] at 170 μmol 
m−2 s−1 (Fig. 8), showing that the response of the mutant under elevated 
[CO2] is strongly related to light intensity. 

4. Discussion 

Elevated CO2 concentrations in the atmosphere often increase 
photosynthetic rates and crop yields (Ainsworth et al., 2004; Kim et al., 
2003; Long et al., 2004). In rice, yield responses under elevated [CO2] 
vary substantially among cultivars, from 14% to over 30% (Ainsworth, 
2008; Liu et al., 2008; Yang et al., 2006b; Zhu et al., 2013). To date, 

Fig. 5. Response of root surface area, root vol-
ume, and total root length in the WT and the 
mutant at elevated [CO2] 
WT-A: WT at control [CO2]; WT-E: WT at 
elevated [CO2]. Mutant-A: mutant at control 
[CO2]; mutant-E: mutant at elevated [CO2]. As-
terisks indicate significant differences between 
two levels of CO2 concentration. The percentages 
are calculated as (E–A)/A. The percentages 
spanning between the two percentages indicate 
the differences between the latter and the 
former. *P < 0.05; bars are ± SD.   

Fig. 6. Response of root length in roots of different 
diameter in the WT and the mutant at elevated 
[CO2] 
WT-A: WT at control [CO2]; WT-E: WT at elevated 
[CO2]. Mutant-A: mutant at control [CO2]; mutant- 
E: mutant at elevated [CO2]. Asterisks indicate 
significant differences between two levels of CO2 
concentration. The percentages are calculated as 
(E–A)/A. The percentages spanning between the 
two percentages indicate the differences between 
the latter and the former. *P < 0.05; bars are ± SD.   

J. Wu et al.                                                                                                                                                                                                                                      



Journal of Plant Physiology 268 (2022) 153586

6

however, the key genetic loci involved in the high-CO2 response have 
not been identified. In this study, we have identified a genetic mutation 
that causes a significant change in the response to elevated [CO2] in 
japonica rice. More than 20% enhancements were seen in both the 
aboveground and root biomass responses when ambient [CO2] was 
raised from 380 to 760 ppm, with increases in root biomass reaching 
27.8%. This change was similar to the yield differences among different 
rice varieties reported previously (Liu et al., 2008; Yang et al., 2006a; 
Zhang et al., 2015; Zhu et al., 2014), suggesting that the mutation site 
identified in our study might be associated with the response to elevated 
[CO2] in rice more generally. 

Root morphological analysis demonstrated that the number of 
adventitious roots, mean root diameter, root surface area, root volume, 
and the total root length of the rice mutant were all enhanced under 
elevated [CO2] (Fig. 4 and 5), and these could explain why the root 
biomass response of the rice mutant was significantly greater than that 
of the WT (Fig. 3). Another interesting finding is that root diameters are 
related to CO2 enhancement. The robust roots (>0.6 mm) and small 
lateral roots (<0.2 mm) of the mutant responded more significantly than 
in the WT under elevated [CO2] (Fig. 6), which was correlated with the 
increase of root surface area and root volume (Fig. 5). It has been shown 

that the small lateral roots of rice can increase root biomass by absorbing 
more water and nutrients (Meng et al., 2019), while the robust roots are 
responsible for tolerance in harder-texture soils due to their strong 
bending stiffness (Jeong et al., 2013; Lynch, 2013). Given the strong 
response of mutant roots to elevated [CO2], especially in the small 
lateral roots and coarse roots, deeper soil penetration and improved 
uptake of water and nutrients are enabled, thus increasing yield. 

In addition to [CO2], light intensity is a critical for photosynthtic 
capacity and, ultimately, yield in rice (Hubbart et al., 2012; Resur-
reccion et al., 2002). Many studies have focused on the genetic and 
physiological basis of light regulation, photoreceptors, and plant growth 
in response to light (Dutta et al., 2018; Jiao et al., 2005; Li et al., 2012; 
Petrillo et al., 2014). Hubbart et al. (2012) have shown that the pho-
toprotective protein PsbS exerts control over the CO2 assimilation rate 
under fluctuating light in rice. It has been shown that low light reduces 
the rate of overall growth and photosynthesis and impairs translocation 
of carbohydrates to developing grains, often resulting in sterility (Dutta 
et al., 2018). In our study, the superiority of the response to elevated 
[CO2] in the mutant over the WT disappeared under weak light condi-
tions (Fig. 8), indicating that the strength of the mutant response is a 
function of light intensity. Given that modern rice cultivars are bred and 
grown under high-light conditions, light may be the limiting factor for 
photosynthesis when CO2 is saturated. Co-limitations with other key 
environmental factors, such as N supply, under elevated [CO2], may also 
be expected (Coskun et al., 2016), and these relationships deserve future 
examination. 

In this study, we found a T-DNA insertion mutant whose growth 
response in seedlings to elevated [CO2] was significantly better than that 
of the WT, probably due to the change of an individual gene that led to 
the mutant’s strong response. The insertion site was located in the 
promoter region of OsGF14b, resulting in a significant decrease in the 
expression of OsGF14b (Fig. 1C). Therefore, OsGF14b might act as a 
negative regulator of root architecture and rice growth under elevated 
[CO2]. It was previously reported that OsGF14b played differential roles 
in panicle and leaf blast resistance (Liu et al., 2016), and functions in rice 
drought and osmotic resistance were also shown (Liu et al., 2019). 
However, this is the first report demonstrating that OsGF14b may be 
involved in the response of rice roots to elevated [CO2]. Since the 
deletion mutant lacking OsGF14b showed a stronger response to 
elevated [CO2] in the seedling stage, the inhibition of this gene’s 
expression may carry potential for enhancing rice growth and, subse-
quently, yield under elevated [CO2]. 

The negative regulation of root growth by OsGF14b under elevated 
[CO2] may be related to the auxin transport and distribution in rice. 
Given that OsGF14b could induce the expression levels of the IAA 
synthesis-related proteins (Yan et al., 2021), auxin synthesis may be 
down-regulated when OsGF14b is defective. However, Li et al. (2011) 
showed that shoot-supplied ammonium inhibits lateral root primordium 

Fig. 7. The proportion of the root length response for roots of different diameter to elevated [CO2] in relation to the total root length response.  

Fig. 8. The biomass response of the WT and the mutant to elevated [CO2] 
under weak light exposure 
WT-A: WT at control [CO2]; WT-E: WT at elevated [CO2]. Mutant-A: mutant at 
control [CO2]; mutant-E: mutant at elevated [CO2]. Asterisks indicate signifi-
cant differences between two levels of CO2 concentration. The percentages are 
calculated as (E–A)/A. The percentages spanning between the two percentages 
indicate the differences between the latter and the former. *P < 0.05; bars are 
± SD. 
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emergence in Arabidopsis by interfering with 
auxin-influx-carrier-AUX1-dependent auxin transport from shoot to 
root, rather than with auxin content. Similar to the role of AUX1, it is 
reasonable to suggest that the knockout of OsGF14b in rice might opti-
mize auxin transport from shoot to root, thereby promoting root growth. 
In addition, the regulation of OsGF14b may be dependent on leaf 
photosynthesis. Rubisco plays a central role in photosynthesis as well as 
in the N utilization of plants. However, the activity and regulation of 
Rubisco are not always optimal for photosynthesis and biomass pro-
duction in various environments (Kanno et al., 2017). Under elevated 
[CO2] conditions, previous studies showed that rbcL expression and 
Rubisco content in rice leaves was significantly decreased (Zhu et al., 
2014). The greater yield response of the S63 rice cultivar under elevated 
[CO2] was mainly linked to the maintenance of Rubisco content and 
gene expression (Zhu et al., 2014). Thus, given that the small Rubisco 
subunit is a target of the 14-3-3 protein (Schoonheim et al., 2007), it is 
possible that the absence of the 14-3-3 gene OsGF14b may alleviate the 
decline of Rubisco content and gene expression in rice leaves, thereby 
promoting rice growth. Although the exact function and mechanism of 
OsGF14b must be further studied, we have here provided a genetic basis 
for improved plant performance under CO2 enhancement in a cultivar of 
the world’s most important crop species. 

In conclusion, we found the mutation of OsGF14b promotes biomass 
response to elevated [CO2] in rice by over 20%, but this negative 
regulation of OsGF14b was not apparent under weak light. Under CO2 
enrichment, the knockout of OsGF14b accelerates the root response, 
especially the development of coarse roots and thin lateral roots, which 
is expected to promote the penetration of roots into denser soils and 
optimise the absorption of water and nutrients, improving the perfor-
mance of the rice crop overall. As OsGF14b target the root system of rice, 
enhancing its growth and affecting its developmental program under 
elevated [CO2], and given that more than 50% of plant biomass globally 
is belowground (Waisel et al., 1996; Rehling et al., 2021), the discovery 
offers important new insight into how enhanced belowground carbon 
storage may be achieved in plants. 

Conclusion 

In conclusion, we found the mutation of OsGF14b promotes biomass 
response to elevated [CO2] in rice by over 20%, but this negative 
regulation of OsGF14b was not apparent under weak light. Under CO2 
enrichment, the knockout of OsGF14b accelerates the root response, 
especially the development of coarse roots and thin lateral roots, which 
is expected to promote the penetration of roots into denser soils and 
optimise the absorption of water and nutrients, improving the perfor-
mance of the rice crop overall. As OsGF14b target the root system of rice, 
enhancing its growth and affecting its developmental program under 
elevated [CO2], and given that more than 50% of plant biomass globally 
is belowground (Waisel et al., 1996; Rehling et al., 2021), the discovery 
offers important new insight into how enhanced belowground carbon 
storage may be achieved in plants. 
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