
Trends
Major advances in understanding the
complexity of the N cycle have recently
been made, with the discovery of pre-
viously unknown microbial players and
N transformations.

The study of plant root exudates and
their influence on the plant–soil micro-
biome in shaping nutrient cycles has
greatly intensified in recent years.

Root exudates that specifically inhibit
soil nitrification have been identified in
important crop species, including rice,
wheat, and sorghum, while others
have been shown to stimulate root
nodulation and N2 fixation, even in
neighboring plants.

By influencing soil N cycle dynamics,
root exudates have been shown to
improve N use efficiency and can help
to mitigate environmental pollution and
climate change.
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How Plant Root Exudates
Shape the Nitrogen Cycle
Devrim Coskun,1,2 Dev T. Britto,1 Weiming Shi,3 and
Herbert J. Kronzucker1,4,*

Although the global nitrogen (N) cycle is largely driven by soil microbes, plant
root exudates can profoundly modify soil microbial communities and influence
their N transformations. A detailed understanding is now beginning to emerge
regarding the control that root exudates exert over twomajor soil N processes –
nitrification and N2 fixation. We discuss recent breakthroughs in this area,
including the identification of root exudates as nitrification inhibitors and as
signaling compounds facilitating N-acquisition symbioses. We indicate gaps in
current knowledge, including questions of how root exudates affect newly
discovered microbial players and N-cycle components. A better understanding
of these processes is urgent given the widespread inefficiencies in agricultural
N use and their links to N pollution and climate change.

The Nitrogen Cycle Today
To a great extent, the N cycle of the Earth can be described as a network of oxidation–reduction
reactions catalyzed by plants, fungi, bacteria, and archaea. These organisms modulate the
oxidation state (OS) of N between that of fully reduced amines (e.g., ammonium, NH4

+
[21_TD$DIFF];

OS = �3) and fully oxidized nitrate (NO3
�; OS = +5; Figure 1). The largest pool of N in the

biosphere, atmospheric dinitrogen gas (N2; OS = 0), is not directly available to most organisms,
but enters the living world naturally via biological N2 fixation (BNF, see Glossary) by
diazotrophic prokaryotes (as well as geochemically, e.g., via lightning) [1]. These unicellular
microorganisms can be bacterial or archaeal, free-living or in symbiotic associations (e.g.,
within plant root nodules), and reduce N2 to NH4

+, which can then be incorporated into amino
acids and thence into a myriad of organic compounds [2,3]. NH4

+ can also be readily oxidized
by soil microbes, producing hydroxylamine (NH2OH; OS = �1), nitrite (NO2

�; OS = +3) and
NO3

� via the process of nitrification. This process is catalyzed by a host of microorganisms
termed ammonia-oxidizing bacteria and archaea (AOB and AOA, respectively), nitrite-oxidizing
bacteria (NOB), as well as the newly discovered comammox (complete ammonia oxidizers)
that perform both oxidative steps in a single bacterium of the genus Nitrospira [4–7]. The
reverse process, denitrification, involves the reduction of NO3

� to NO2
�, nitric oxide (NO;

OS = +2), nitrous oxide (N2O; OS = +1), and finally back to N2, and is performed by bacteria,
archaea, and fungi [7]. Two relatively under-reported reaction sequences that nevertheless
contribute significantly to terrestrial N cycling include dissimilatory nitrate reduction to
ammonia (DNRA), involving the use of NO3

� as an electron acceptor by bacteria and fungi,
which reduce it to NH3 via NO2

� under anaerobic or low-oxygen conditions [8], and anammox
(anaerobic ammonium oxidation), the formation of N2 from NO2

� and NH3 by bacteria via the
intermediates NO and hydrazine (N2H4; OS = �2) [9,10].

In recent decades, our understanding of the N cycle has undergone two major modifications.
First, the discovery of archaea has raised fundamental questions about the participation of this
vast prokaryotic domain, distinct from bacteria, in the N cycle. While it is now known that
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Glossary
Anammox: anaerobic ammonium
oxidation, the formation of N2 from
nitrite (NO2

�) and NH3/NH4
+ via the

intermediates nitric oxide (NO) and
hydrazine (N2H4).
Arbuscular mycorrhizal fungi
(AMF): endosymbiotic fungi that
form arbuscules and vesicles in roots
of vascular plants. Plants provide
photosynthates to AMF in exchange
for nutrients (e.g., P and N).
Biological N2 fixation (BNF): the
conversion of N2 into NH3 by
diazotrophic (N2-fixing) microbes
(bacteria and archaea), in contrast to
geochemical processes (e.g.,
lightning) or the industrial Haber–
Bosch process.
Biological denitrification
inhibitors (BDIs): compounds found
in plants that inhibit denitrification
reactions. Thus far, only procyanidins
from root extracts of Fallopia spp.
have been shown to have BDI
activity.
Biological nitrification inhibitors
(BNIs): compounds found in plants
that inhibit nitrification reactions. In
root exudates, five compounds with
BNI activity have so far been
identified, in sorghum, Brachiaria
humidicola, and rice.
Comammox: complete ammonia
oxidizers, bacteria from the genus
Nitrospira that perform complete
nitrification of NH3 to NO3

�.
Denitrification: the reduction of
NO3

� to N2 via the intermediates
NO2

�, NO, and N2O. Denitrification is
performed by bacteria, archaea, and
fungi that use NO3

� as an electron
acceptor during anaerobic
respiration.
Dissimilatory nitrate reduction to
ammonia (DNRA): the bacterial and
fungal reduction of NO3

� to NH3 via
NO2

�.
Nitrification: the bacterial and
archaeal oxidation of NH3 to NO3

�

via the intermediates NH2OH and
NO2

�.
Plant growth-promoting
rhizobacteria (PGPR): free-living
bacteria that reside on root surfaces
and in extracellular spaces. Some
PGPR are diazotrophic and provide
fixed nitrogen to plants.
Rhizosphere: the narrow interface
between plant roots and soil in which
complex interactions occur between
root exudates and soil
microorganisms.
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Figure 1. The Soil Nitrogen Cycle. A schematic overview of the major N transformations in the soil N cycle (adapted from
[123]). Colored arrows correspond to specific N transformations (indicated at the top of the figure) that are catalyzed by
specific enzymes, including various nitrate reductases (NAS, NAR, NAP, and EUK-NR), nitrite reductases (NIR, NRF), nitric
oxide reductase (NOR), nitrous oxide reductase (NOS), nitrogenase (NIF), [11_TD$DIFF]ammonia monooxygenase (AMO), hydroxy-
lamine oxidoreductase (HAO), nitrite oxidoreductase (NXR), and hydrazine hydrolase (HH). Root exudates (denoted by the
thick, pale-red arrow) influence some of these reactions (see text for details [12_TD$DIFF]). Numeric scale at bottom indicates oxidation
state (OS) of nitrogen-containing compounds.
For a Figure360 author presentation of Figure 1, see the figure online at http://dx.doi.org/10.1016/j.tplants.2017.05.
004#mmc1
archaea are capable of N2 fixation, this may be largely restricted to marine and freshwater
sediments, and might not be of great significance to agricultural systems [11]. By contrast,
nitrifying archaea (i.e., AOA) have recently been found to be widely distributed, particularly in
acidic soils [4], although their activities relative to AOB might be inhibited at high-NH4

+

concentrations [12].

The second major modification is due to a profound change in the nitrogen cycle itself, in other
words its accelerating disruption by human activities. Collectively, the industrial production of
reduced-N fertilizer using the Haber–Bosch process, the fixation of N2 by cultivated legumes,
and the combustion of fuels now result in more fixed nitrogen per year than all natural processes
combined (210 vs 203 Tg N year�1, respectively) [13]. While this has been immensely valuable
to human commerce and nutrition [14,15], it has also come at the cost of a wide range of
serious environmental problems, most notably the eutrophication of fresh and marine waters
[16,17], and the production of N2O, a potent greenhouse gas (300-fold more heat-trapping
capacity than CO2, permolecule) and the singlemost important ozone-destroying agent known
[18,19]. These issues are directly linked to nitrification processes in fertilized soils, which
generate the soil-mobile anion NO3

� from relatively immobile NH4
+ pools, causing massive

losses of N from agricultural systems (Figure 2) and providing substrates for both nitrifiers and
denitrifiers to produce N2O [20,21].
2 Trends in Plant Science, Month Year, Vol. xx, No. yy
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Root exudates: chemical
compounds secreted by plant roots,
some of which act as signals in the
communication between plants and
neighboring species (e.g.,
prokaryotes, fungi, herbivores, and
other plants).
Although plants cannot themselves fix N2, or directly engage in nitrification, they do take up and
assimilate both NO3

� and NH4
+, displaying substantial variations in preference for one inor-

ganic N form over the other among different genotypes and environments [3,22]. Moreover, it is
becoming increasingly clear that plants can exert control over N transformations catalyzed by
the fungal and prokaryotic populations in and near the rhizosphere by releasing root
exudates [23,24]. These are diverse chemicals that appear to be part of a belowground,
inter-species language between plants and other plants, or other types of organisms [25,26]. In
this article we discuss recent developments in the study of root exudates and their roles in
altering the microbial pathways of N2 fixation and nitrification, with special emphasis on
improving agronomic N-use efficiency (ANUE, a ratio of yield to N-fertilizer input) and amelio-
rating the environmental problems brought about by an excessively N-rich world.

Biological Nitrification Inhibition: A Means to Curb N Losses?
In modern agricultural systems, ANUE tends to be very low. Of the total amount of fertilizer N
applied to crop systems (�115 Tg N year�1

[26_TD$DIFF], globally [27]), 50–70% is lost to the surrounding
environment [28–30]. These environmentally deleterious losses take the form of NH3 volatiliza-
tion (up to 64%, and, as a global average, 18%of N-fertilizer application [31,32]), NO3

� leaching
and runoff (globally, an average of 19% of application [33,34]), and denitrification (e.g., direct
N2O emissions [28_TD$DIFF]account for 1% of fertilizer application[29_TD$DIFF], globally [30,35] (cf. [36]) (Figure 2). To
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Figure 2. Root Exudates as a Means ToMitigate Agricultural Nitrogen Losses. The current yearly global N fertilizer application rate is estimated to be�115 Tg
[27], of which, globally, 50–70% is lost from agricultural systems to the environment [28–30]. NO3

�, the product of nitrification, can be lost via leaching and runoff at
global rates estimated to account for 19% of total N-fertilizer application ([34]; see also [124]). Global NH3 volatilization is estimated to account for �18% of N-fertilizer
application [32]. Direct N2O emissions, via denitrification and nitrifier denitrification reactions, are estimated globally at 1% of fertilization application [35]; however,
including estimates for indirect N2O emissions (from N leaching, runoff, and atmospheric deposition; broken arrows) can more than double these losses [35,36]. Other
potential routes for N loss include NO and N2 emissions as well as immobilization by other species or soils (not shown). Biological nitrification inhibitors (BNIs) released
from root exudates suppress nitrification via AMO and HAO inhibition (text for details). Thus far it is unknown whether root exudates specifically target NXR or
denitrification enzymes (but see [64]). Note that the inhibition of nitrification (specifically via inhibition of AMO, which catalyzes the rate-limiting step) can potentially
enhance NH3 volatilization [91] (text for details).
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Table 1. BNIs and Related Substancesa,b

Category Compound Source Comments Refs

BNIs from
root exudates

Sorgoleone Sorghum bicolor Blocks AMO and HAO;
allelopathic compound

[53,56]

Sakuranetin Sorghum bicolor Blocks AMO and HAO; non-
effective BNI in soil assay;
phytoalexin

[53,112]

Methyl 3-(4-
hydroxyphenyl)
propionate (MHPP)

Sorghum bicolor Blocks AMO; influences root
system architecture

[53,57,
113,114]

Brachialactone Brachiaria humidicola Blocks AMO and HAO;
reduces field-level nitrification
and N2O emission

[46]

1,9-Decanediol Oryza sativa Blocks AMO; release
correlated to NUE

[48]

BNIs from
tissue
extracts

Caffeic acid Mid- to late-successional
species (e.g., Ambrosia
psilostachya, Andropogon
spp., Sorghastrum nutans,
Quercus spp., Pinus
ponderosa)

Complete nitrification inhibition
(with 1 mM) in soil suspension
(with Nitrosomonas)

[52,59]

Chlorogenic acid Mid- to late-successional
species (e.g., Ambrosia
psilostachya,
Haplopappus ciliates,
Andropogon spp.,
Panicum virgatum,
Sorghastrum nutans, Pinus
echinata, Quercus spp.,
Pinus ponderosa)

Complete nitrification inhibition
(with 100 nM) in soil
suspension (with
Nitrosomonas)

[52,59]

Ferulic acid Pinus echinata, Quercus
spp.

Complete nitrification inhibition
(with 10 nM) in soil suspension
(with Nitrosomonas)

[52]

Methyl ferulate B. humidicola roots Released via root
decomposition

[115]

Methyl p-coumarate B. humidicola roots Released via root
decomposition

[115]

Linoleic acid B. humidicola shoots Blocks AMO and HAO; inhibits
urease

[116]

Linolenic acid B. humidicola shoots Blocks AMO and HAO [116]

Methyl linoleate B. humidicola shoots Most stable BNI of the B.
humidicola tissue [16_TD$DIFF]extracts in
soils; inhibits urease

[116]

Synthetic
nitrification
inhibitors
(SNIs)

Dicyandiamide (DCD) Synthetic Widely used in agriculture;
blocks AMO; does not
increase yields; risks of
degradation, leaching, food
and water contamination,
increased NH3 volatilization,
indirect N2O emission

[37,42–45,
116,117]

3,4-Dimethylpyrazole
phosphate (DMPP)

Synthetic Widely used in agriculture;
blocks AMO; more effective
than DCD in lowering NH3 and
N2O emission and NO3

�
[15_TD$DIFF]

leaching; variable effects on
yield; risk of increased NH3

volatilization and indirect N2O
emission

[37,44,
45,103]

4 Trends in Plant Science, Month Year, Vol. xx, No. yy
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Table 1. (continued)

Category Compound Source Comments Refs

2-Chloro-6-
(trichloromethyl)
pyridine ( [17_TD$DIFF]Nitrapyrin)

Synthetic Blocks AMO; risk of increased
NH3 volatilization and indirect
N2O emission; can also inhibit
denitrification

[37,44,45,
116,118,
119]

Biological
denitrification
inhibitors
(BDIs)

Procyanidins Fallopia spp. root extracts Allosteric inhibitor of nitrate
reductase

[63,64]

Synthetic
denitrification
inhibitors
(SDIs)

Acetylene, [18_TD$DIFF]Azide,
Cyanide,
Dinitrophenol (DNP),
Nitrapyrin, Vapam
(pesticide), Dalapon
(pesticide), Toluidine
(pesticide)

Synthetic General metabolic inhibitors;
mechanisms of action largely
unknown

[120]

Pyrimidone-based
and triazinone-based
compounds

Synthetic Inhibitors of copper nitrate
reductase (NirK) from
Fusarium oxysporum

[121]

Urease
inhibitors
(UIs)

N-(n-butyl)
thiophosphoric
triamide (NBPT)

Naturally isolated or
synthetic

Most widely used; reduces
N2O emissions and increases
yield; temperature sensitive

[37,122]

aSummary of biological nitrification inhibitors (BNIs) and related substances that influence nitrification and other key steps in
the N cycle.

bAbbreviations: AMO, ammonia monooxygenase; HAO, hydroxylamine oxidoreductase.
reduce N losses and pollution from agriculture, several strategies have been proposed,
including the use of ‘enhanced-efficiency fertilizers’ (slow-release formulae typically laced with
synthetic inhibitors of nitrification and urea hydrolysis via urease; Table 1) and refinements in
farming practices (e.g., improvements in fertilizer application rate, source, timing, and place-
ment) [37–39]. Although such strategies have produced variable results across different
cropping systems [39–41], it is clear that there should be greater management and policy
focus on the improvement of [30_TD$DIFF]ANUE.

Synthetic nitrification inhibitors have been criticized for their difficulties in application, cost, and
environmental safety [42–45]. One alternative that has received much recent attention involves
the use of compounds in root exudates that inhibit nitrification, collectively known as biological
nitrification inhibitors (BNIs [46–50]) (Table 1 and Figure 2). While root exudates have long
been postulated to control soil nitrification (e.g., in the context of ecological succession [51,52]),
only in the past decade have their presence and function been definitively demonstrated in
sorghum [53], Brachiaria humidicola [46], rice [48,54], wheat [49], and Leymus racemosus, a
wild relative of wheat [55]. The recent breakthroughs in the detection and characterization of
[31_TD$DIFF]BNIs are due in large part to technological advances, in particular through the use of a
recombinant strain of Nitrosomonas europaea that responds bioluminescently to the oxidation
of NH4

+
[27_TD$DIFF] to NO2

� [47]. To date, however, only five BNI compounds have been isolated:
sorgoleone (a benzoquinone dominant in the hydrophobic fraction of root exudates), sakur-
anetin (a hydrophilic flavanone), and methyl 3-(4-hydroxyphenyl) propionate (MHPP; a hydro-
philic phenylpropanoid) from sorghum [53]; brachialactone (a cyclic diterpene) from B.
humidicola [46]; and 1,9-decanediol (a fatty alcohol) from rice [48] (Table 1). Given that these
BNIs (with the possible exception of brachialactone) are also known to perform roles that are
unrelated to nitrogen metabolism (e.g., sorgoleone is a well-known herbicide [56]), the speci-
ficity of these compounds has recently been questioned [50]. However, given that in many
Trends in Plant Science, Month Year, Vol. xx, No. yy 5
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cases their release appears to be a tightly regulated process (e.g., stimulated solely by
external exposure of roots to NH4

+ [55,57,58]), it is likely that these compounds also possess
roles specific to nitrification inhibition. In addition, given the widespread occurrence of
nitrification inhibitors found in plant tissues (although not necessarily exuded by roots; Table 1)
[47,59,60], we may reasonably expect many more to be discovered in the near future. Of
those identified, all have been demonstrated to effectively inhibit ammonia monooxygenase
(AMO; which catalyzes NH3 oxidation to NH2OH, the first and rate-limiting step of nitrification),
whereas only sorgoleone, sakuranetin, and brachialactone inhibit hydroxylamine oxidoreduc-
tase (HAO; which catalyzes the second step, i.e., oxidation of NH2OH to NO2

�) (Figure 2).
Moreover, in a recent comprehensive study of 96 landraces of wheat, 26 displayed significant
BNI activity in their root exudates, including one modern commercial cultivar (cv. Janz) [49].
Although specific BNI compounds have yet to be isolated from root exudates in this species,
there appears to be considerable promise in breeding biological nitrification inhibition into
modern, elite, wheat cultivars, particularly given the successful transfer of this trait from L.
racemosus to cultivated wheat via chromosome addition [48]. Similarly, a screening of 19 rice
genotypes indicated strong BNI potential in both indica and japonica subspecies, and,
importantly, the strength of [33_TD$DIFF]inhibition was shown to be positively correlated with both
ammonium-use efficiency and ammonium preference [48], suggesting a specific functional
relationship (and a genetic link) between [34_TD$DIFF]BNIs and ANUE. Surprisingly, to our knowledge,
[35_TD$DIFF]biological nitrification inhibition has not yet been demonstrated in maize, the third most
important crop species after rice and wheat in terms of global fertilizer consumption and
crop output [29].

Of the BNIs, sorgoleone has been the most thoroughly characterized thus far (mostly in its
context as an allelochemical [56]). It is produced solely in root hairs and exuded as golden-
brown oily droplets from root-hair tips [61]. It is not as clear where other BNIs are exuded along
the root axis. The molecular transport mechanisms mediating BNI efflux across plasma
membranes into the rhizosphere are also not well understood, although several mechanisms
have been proposed. ATP-binding cassette (ABC) transporters, for example, appear to
mediate the release of flavonoids [61], but whether they are involved in the release of BNIs
has yet to be determined. Other possible mechanisms include MATE (multidrug and toxic
compound extrusion) transporters, which have been implicated in the efflux of various root
exudates, including flavonoids, as well as simple diffusion, and vesicular trafficking (i.e.,
exocytosis), which has been postulated as a release mechanism for cytotoxic compounds
such as sorgoleone [61,62].

How root exudates influence denitrification is currently unknown. However, biological
denitrification [36_TD$DIFF]inhibitor (BDI) activity has recently been demonstrated in root extracts
from Fallopia spp., an invasive weed associated with low denitrification potential in soils [63].
Here, enzyme-kinetic analysis showed that procyanidins (a class of flavonoid compounds)
could specifically inhibit nitrate reductase allosterically in the model strain Pseudomonas
brassicacearum NFM 421, likely by affecting membrane stability [64]. Similar kinetic analyses
are currently lacking for [37_TD$DIFF]BNIs, but will be important to determine specific mechanisms of
inhibition. In the case of [38_TD$DIFF]BDIs, future studies will be necessary to determine whether root
exudates are involved, as opposed to root-tissue extracts. Moreover, it is important to
recognize the relative contributions of nitrification and denitrification reactions to N losses
among various ecosystems. For example, nitrifier denitrification can account for up to 97% of
N2O emissions in a sugarcane cropping soil, 70% in cereal-cropping and dairy-pasture soils,
and only 20% in a vegetable-producing soil [65]. Knowledge of such variable contributions of
nitrification and denitrification reactions to N2O release will help to determine the need for
crop rotation, intercropping, or breeding of plants with variable amounts of [39_TD$DIFF]BNIs and/or
BDIs.
6 Trends in Plant Science, Month Year, Vol. xx, No. yy
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Root Exudates, N2 Fixation, and Symbiotic Relationships
Perhaps the best-understood signaling network involving root exudates is that which orches-
trates the endosymbiotic relationship between legumes and the group of diazotrophic bacteria
known as rhizobia (e.g., Rhizobium, Bradyrhizobium, and Azorhizobium spp.) [66,67] (Figure 3).
In particular, flavonoids (e.g., genistein, naringenin, and hesperetin [68,69]) from legume root
exudates stimulate the expression of nod genes in rhizobia, the products of which synthesize
nodulation (Nod) factors. These factors take the form of lipochitooligosaccharides (LCOs) and
provide the basis for host–microbe specificity and nodule initiation [67,68,70]. LCOs are
perceived by the plant via receptor-like kinases, which are located in the plasma membranes
of root epidermal cells, activating a Ca2+[32_TD$DIFF]-dependent signaling cascade that leads to nodule
formation [67]. Interestingly, root exudates also elicit the release of LCOs, called mycorrhizal
(Myc) factors, from arbuscular mycorrhizal fungi (AMF) [70,71]. While this interaction is
mainly initiated by root-exuded compounds known as strigolactones [72], flavonoids also
stimulate AMF invasion and arbuscule formation in roots [68] (Figure 3). Like Nod factors, Myc
factors are perceived by plants and trigger signaling pathway elements common to those found
in the development of rhizobial associations [67,73]. AMF endosymbioses represent the most
widespread of terrestrial plant symbioses, and are observed in 70–90% of plants, including
cereals and legumes [70,74,75]. Although the primary function of AMF appears to be plant
phosphorus (P) acquisition, they have also been shown to promote N nutrition (and subse-
quently create mulches enriched in N [75]), although the basis of this tendency remains unclear
[76]. Currently underway is the challenging feat of engineering BNF in cereals, in part by
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Figure 3. [14_TD$DIFF]TThe Influence of Root Exudates on Symbiotic Relationships in an Intercropping System. In a maize–faba bean intercropping system, root
exudates from maize (e.g., flavonoids such as genistein) can stimulate rhizobial Nod factors, as well as nodulation and biological N2 fixation (BNF) in faba bean roots,
thereby enhancing N nutrition, biomass, and yield. In exchange, root exudates containing fixed N (e.g., NH4

+
[13_TD$DIFF], amino acids, etc.) can be transferred from faba bean to

maize, thus also benefiting N nutrition, growth, and yield of maize. Root exudates (e.g., strigolactones, flavonoids) from both species can stimulate Myc factors from
arbuscular mycorrhizal fungi (AMF), stimulating AMF symbiosis which can improve plant N nutrition. Root exudates can also recruit diazotrophic plant growth-promoting
rhizobacteria (PGPR) and cyanobacteria (CB), which can colonize roots and improve plant N nutrition.
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exploiting the similarities in signaling networks between rhizobial and AMF endosymbioses
[77,78]. Such a development could greatly benefit agriculture, particularly in subsistence
farming systems, and reduce the global reliance on synthetic N fertilizers and their environ-
mental impact.

Nodulation and BNF in non-legumes are also influenced by root exudates [79]. Symbioses with
the actinobacterial genus Frankia occur in >200 species of actinorhizal plants, spanning eight
families, all of which are dicotyledonous, and all of which, except for the herbaceous genus
Datisca, are trees and shrubs [80]. Here, flavonoids in root exudates may play a role in host–
microbe specificity, although the molecular mechanisms underlying symbiotic development (e.
g., the involvement of canonical nod genes) remain unknown [26,68,81]. However, isoflavo-
noids in root exudates of the actinorhizal tree Casuarina cunninghamiana have been shown to
promote growth and alter the surface properties of an associated strain of Frankia, and facilitate
the infection and nodulation process [82–84]. It is anticipated that recent advances in RNAi
technology and the complete genome sequencing of Frankia (strain CcI3) will greatly improve
our understanding of such processes [73,80].

Chemoattractants found in root exudates are also involved in cyanobacteria–plant symbioses,
as observed, for example, in Nostoc attraction to its natural hosts, cycads, liverworts, and
Gunnera, and to the non-hosts rice, wheat, and Arabidopsis [79,85,86]. Hormogonia, an
infectious and highly motile form of filamentous cyanobacteria, can be induced by hormogonia-
inducing factors (HIFs) in host and non-host root exudates, typically in response to low-nitrogen
conditions [79]. However, to our knowledge, no signaling or attractant compounds involved in
hormogonia recruitment have been identified.

In addition, some free-living diazotrophs form ‘associative’ (i.e., non-nodulating) interactions
with plants, residing on root surfaces and in extracellular spaces (e.g., by penetrating openings
at sites of lateral root emergence), and contributing to increases in biomass and yield in
important cereals including rice, wheat, and maize [79,87] (Figure 3). Known as plant
growth-promoting rhizobacteria (PGPR), these organisms are found in many genera of
alpha- and betaproteobacteria, and include Azoarcus, Azospirillum, Azotobacter, Burkholderia,
Enterobacter, Herbasprillum, Glucenobacter, and Pseudomonas [79]. As in endosymbioses
between legumes and rhizobia, and between actinorhizal plants and Frankia, flavonoids in root
exudates appear to be important plant signals for PGPR interactions [79]. For example, the
flavonoid naringenin was shown to significantly stimulate wheat root colonization by diazo-
trophic rhizobacteria, including Azospirillum brasilense and Azorhizobium caulinodans [88].
However, like actinorhizal associations, the mechanistic underpinnings of this process are as
yet poorly understood.

Interestingly, it is now known that root exudates from non-nodulating plant species can
influence root nodulation and N2 fixation in legumes (Figure 3). In a recent study, the intercrop-
ping of maize with faba bean was shown to increase nodulation and N2 fixation in faba bean
[89], and the underlying crosstalk was attributed to maize root exudates. In bean plants, these
exudates elicited a nearly twofold increase in genistein exudation, an 11-fold increase in
expression of chalcone-flavanone isomerase (a key enzyme involved in flavonoid synthesis),
and an upregulation of several key nodulation genes [89]. This study provides an important
mechanistic basis for the well-established phenomenon of enhanced ecosystem productivity
and overyielding observed in legume/cereal intercropping systems [90,91]. It may prove
scientifically and pragmatically worthwhile to further investigate these effects in other cereals,
legumes, or cultivars of maize. Moreover, future studies along these lines might benefit from the
addition of squash in polyculture, the third member of the ‘three sisters’, an ancient cropping
system in the Americas [92]. The increased biomass and yield production in the polyculture,
8 Trends in Plant Science, Month Year, Vol. xx, No. yy
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Outstanding Questions
To what extent can root exudation in
major crop species (especially cereal
grains) be used as a means of increas-
ing ANUE and agricultural productivity,
while limiting greenhouse gas produc-
tion by soil processes? What might the
trade-offs be – for example in terms of
resource and energy budgets toward
root exudates versus grain yield, or BNI
[43_TD$DIFF]activity resulting in enhanced NH3 vol-
atilization and deposition?

Do plant roots exude compounds that
influence every stage of the N cycle in
soils, or only certain steps (e.g., nitrifi-
cation and N2 fixation)?

How specific are such compounds?
How are they synthesized and trans-
ported, and by what mechanism do
they act upon other organisms (pro-
karyotes, fungi, herbivores, and other
plants)?

How do root exudates involved in N
cycling influence community
structure?

How have the complex underground
systems of chemical communication
evolved?
relative to the respective monocultures, have largely been attributed to a ‘complementarity’
effect, wherein differences in the root architectures of intercropped species allow niche
specialization via unique, but complementary, nutrient-foraging strategies [92]; however, it
has recently been suggested that the production of root exudates may in fact be more
important here [93]. An improved mechanistic understanding of the role of root exudates in
intercropping systems can be highly beneficial, particularly in resource-limited agricultural
systems that rely on this practice [91], but also in terms of reducing global reliance on fertilizers
and their environmental impact.

The belowground transfer of fixed N from legumes to non-legumes (e.g., from faba bean to
maize) represents another fascinating facet of the intercropping relationship (Figure 3). Below-
ground N transfer can occur through three possible pathways: (i) indirectly, via decomposition
of root tissues and subsequent uptake of mineralized N, (ii) directly, via exudation of soluble N
compounds by legumes and uptake by non-legumes, or (iii) via mediation by plant-associated
mycorrhizal fungi [94]. During the early growth stages of legumes, however, the majority of
belowground N transfer appears to occur via root exudates [95]. Roots can release organic
forms of N [96,97], primarily through root nodules and root tips [98], and neighboring plants are
able to take up these forms of N [99,100]. Among most temperate legumes (e.g., alfalfa), NH4

+

and amino acids are the most prevalent forms of low molecular weight N-compounds con-
tained in root exudates [95,101]. By contrast, tropical legumes (e.g., soybean) primarily release
ureides [102].

The roles of root exudates in influencing crucial symbiotic relationships in the N cycle, such as
those between legumes and rhizobia, and between actinorhizal plants and Frankia, as well as a
wide variety of interactions between plants and diazotrophic PGPR, cyanobacteria, AMF, and
even neighboring plants, are only beginning to be elucidated. Only with better mechanistic
understanding of these important interactions can efforts be pursued to breed or genetically
engineer traits such as increased root exudation to promote both BNF and belowground N
transfer.

Concluding Remarks and Future Perspectives
Given the rapid pace with which our understanding of the influence of plant root exudates in
nitrification and N2 fixation is increasing, a case may be made that we are on the verge of a new
‘green' revolution, one in which the wasteful and environmentally damaging losses of agricul-
tural N can be curtailed, without reducing crop productivity. In the case of biological nitrification
inhibition, a reduction of nitrification via root exudation is expected to not only improve ANUE by
reducing N losses via leaching, runoff, and denitrification but alsomitigate agriculturally sourced
N pollution, which causes eutrophication and climate forcing via N2O emissions. However,
possible trade-offs of BNI-stimulated agriculture must be considered, as with the application of
synthetic nitrification inhibitors. Although effective in reducing such N losses and increasing N-
use efficiency [103], synthetic inhibitors also stimulate NH3 volatilization and subsequent
indirect N2O emissions, undermining or even outweighing the benefits of nitrification inhibition
[44,45]. Whether this is the case for BNIs has yet to be investigated, but given that BNI exudates
may be preferentially released from the root-tip region (see above), it is possible that BNI [41_TD$DIFF]release
occurs mostly in deeper soil layers, thereby minimizing NH3 volatilization, which occurs
predominantly in the surface layers where synthetic nitrification inhibitors are typically applied.

Biological N2 fixation can provide another obvious benefit for ANUE, increasing bioavailable N
directly to the plant and decreasing the reliance on synthetic fertilizers; root exudates can also
be of major practical importance here. As in the case of [42_TD$DIFF]BNIs [48,49], there is clearly a need for
major screening studies among a wide range of plant species and cultivars to determine how
widely distributed BNF-stimulating root exudates might be. This holds for rhizobial and
Trends in Plant Science, Month Year, Vol. xx, No. yy 9
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actinorhizal plants, as well as for plants that recruit diazotrophic PGPR and cyanobacteria; the
importance of PGPR and cyanobacteria is illustrated in highly productive rice cropping systems
benefiting from endophytic rhizobial associations [104] and the use of Azolla as ‘green manure’
[105,106]. The finding that non-BNF plants (e.g., maize) can stimulate nodulation and N2

fixation in neighboring legumes highlights the importance of expanding our understanding of
the role of root exudates in intercropping and crop-rotation systems, such as in the maize–
legume relationship discussed above. This is further underscored by the finding that residual
soil BNI activity, following rotation with B. humidicola, resulted in improved ANUE in maize, as
well as improved yield under low-N conditions [107].

While the use of bacterial test strains such as Nitrosomonas multiformis, and, in particular, the
bioluminescent recombinant strain of N. europaea, has been instrumental in much recent
progress in BNI research [46,48,49,54], the field has largely overlooked the complexity and
variability of soils, as well as the involvement of a multitude of other microbial players, including
other bacterial nitrifiers and also archaea [7]. Although such procedures are undoubtedly
important as an early step in themechanistic tackling of complex problems in chemical ecology,
it is also important to be cognizant of the complexities of natural soils and the limitations of
transferring results from in vitro studies into the field. In one important example, sakuranetin was
shown to effectively suppress nitrification in vitro with the bioluminescence assay, but was
found not to be effective in a soil assay [53].

Indeed, there is a great deal of fascinating physiological work on root exudation that remains to
be done in and beyond the context of the N cycle (see Outstanding Questions). These
endeavors will take the forms of elucidating, among other things, the pathways and mecha-
nisms involved in the synthesis of exudates, their release from roots, and their interactions with
environmental factors (both biotic and abiotic), as well as the genetics and molecular biology of
these diverse processes. In addition, an analysis of the specificity of root-exuded compounds
to a given biochemical process should be undertaken because some BNIs (e.g., sorgoleone)
have been found to also have functions very distinct from nitrification inhibition [49,50,56].

Lastly, it is important to consider the role of root exudates in the N cycle in the context of climate
change. Enhanced root exudation has been demonstrated in some ecosystems under elevated
atmospheric CO2, and this can lead to accelerated microbial activity associated with soil
organic matter decomposition and rhizosphere N turnover, particularly under N-limiting con-
ditions [108–110]. Similar effects have been seen at elevated temperatures [111]. It remains
unclear, however, how enhanced root exudation due to climate change will affect other
components of the N cycle, such as BNF, nitrification, and denitrification.
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