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SUMMARY. In this chapter, we shall review plant responses to changes
in supply of the two inorganic N sources nitrate (NO3

�) and ammonium
(NH4

+), with an emphasis on primary mechanisms of transport, and their
regulation. The topics discussed here include: soil N resources and their
ecological implications for plant life; parallel responses in plant growth
and N transport activity as functions of N supply; transport kinetics;
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inducibility and downregulation of NO3
� and NH4

+ acquisition; plant
sensing of NO3

�; and low-affinity N transport. Throughout, we attempt
to identify areas that are controversial, and those in need of further ex-
amination. [Article copies available for a fee from The Haworth Document De-
livery Service: 1-800-HAWORTH. E-mail address: <docdelivery@haworthpress.
com> Website: <http://www.HaworthPress.com>  2005 by The Haworth Press,
Inc. All rights reserved.]
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INTRODUCTION

Plants and Nitrogen in an Ecological Context

Nitrogen (N) limitation in the environment, and its consequences for
plant growth and development, have long been of interest to agrono-
mists and plant physiologists, while more recently, issues of excess N
supply have been gaining attention, particularly among ecologists.
Plant responses to high and low soil N are both important, as inorganic
nitrogen concentrations in soil solution can range over many orders of
magnitude, from barely detectable (~1 µM), to over 1 M (Magistad et al.,
1945; Clement et al., 1978; Vitousek et al., 1982; Jackson and Caldwell,
1993; Wolt, 1994; Nesdoly and Van Rees, 1998). Accordingly, plants
have evolved complex uptake systems that acquire N from even very di-
lute soil solutions, enabling them to grow at rates comparable to plants
growing in soils with much higher N (Figure 1; Clement et al., 1978;
Forde and Clarkson, 1999; von Wiren et al., 2000; Glass et al., 2002). At
the other end of the scale, certain plants have evolved mechanisms by
which they may survive exposure to potentially toxic soil-[N] concen-
trations, particularly those of NH4

+ (Britto et al., 2001; Kronzucker et
al., 2001; Britto and Kronzucker, 2002).

In well-aerated soils of agricultural and natural ecosystems (espe-
cially disturbed, early-successional ones), most of the nitrogen is typi-
cally present as nitrate (NO3

�) (Crawford and Glass, 1998). In some
soils, however, for example those of late-successional temperate and
boreal forest environments, ammonium (NH4

+) becomes the major or
sole inorganic N source (Vitousek et al., 1982; Blew and Parkinson,
1993; Pearson and Stewart, 1993; van Cleve et al., 1993; Bijlsma et al.,
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2000). NH4
+ is also commonly found at low soil pH and in soils of

colder climates, heathlands, and the irrigated rice fields of the world
(Kronzucker et al., 1997, 2000). Usually, the two N sources coexist in
soils at various ratios, and therefore it is not surprising that most plants
appear to be able to acquire both NO3

� and NH4
+.

At the low end of the N-provision scale, growth tends to be similar
for most plants on either N source (Britto and Kronzucker, 2002). How-
ever, there are some interesting exceptions to this tendency among
plants that have evolved in NH4

+-rich habitats. Trees of late-succes-
sional forests demonstrate superior growth and more efficient N capture
with NH4

+ relative to NO3
� (McFee and Stone, 1968; Van den Driessche,

1971; Marschner et al., 1991; Lavoie et al., 1992). In the case of white
spruce (Picea glauca), this N-source preference is reflected in a high
flux and compartmentation capacity for NH4

+, together with an appar-
ent atrophy in the uptake of NO3

� (Kronzucker et al., 1997). Because
soil [NH4

+] tends to increase relative to [NO3
�] over the time-course of

ecological succession (Lodhi, 1977), and because species with corre-
sponding N preferences also succeed each other over this time frame,
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FIGURE 1. Typified response of plant growth as a function of externally pro-
vided nitrate (solid line) and ammonium (dashed line). Adapted from Clement
et al., 1978.



we have proposed that soil N dynamics could be a driving force in forest
succession (Kronzucker et al., 1997, 2003a). Plants belonging to the
heather family (Ericaceae) are another example of plants that grow on
acidic, ammonium-rich soils, and are likewise considered to be “ammo-
nium specialists,” to the extent that NH4

+ appears to be obligatory for
the growth of at least one member of this family, the cranberry (Vac-
cinium macrocarpum; Greidanu et al., 1972). Finally, rice (Oryza
sativa), is a particularly interesting example of a plant that can thrive in
an ammonium-rich environment. However, while it has long been re-
garded as an exemplary ammonium specialist, recent evidence has
shown that rice has very high N-acquisition and yield potentials when
growing on NO3

�, possibly superior to those obtained in NH4
+-domi-

nant paddy soils. This difference could have important consequences
for issues of world hunger (Kronzucker et al., 2000).

Despite these instances of NH4
+ tolerance and even preference by

plants, however, toxicity symptoms emerge for most species at in-
creased levels of NH4

+ supply (Pearson and Stewart, 1993; Kronzucker
et al., 1997, 2003a; Bijlsma et al., 2000; Britto and Kronzucker, 2002).
NH4

+ over-supply can result in a decrease in plant yield of 15 to 60% in
crops such as tomato and bean (Woolhouse and Hardwick, 1966;
Chaillou et al., 1986), and results in plant mortality and even species ex-
tirpation in some cases (Gigon and Rorison, 1972; Magalhaes and
Wilcox, 1983, 1984; Pearson and Stewart, 1993; de Graaf et al., 1998).
It is also ecologically significant that high NH4

+ can inhibit seed germi-
nation and seedling establishment (Cooke et al., 1962; Hunter and
Rosenau, 1966; Megie et al., 1967; Barker et al., 1970; Westwood and
Foy, 1999), and that both NH4

+ and NO3
� oversupply can significantly

reduce the extent of mycorrhizal associations (Boxman et al., 1991;
Lambert and Weidensaul, 1991; van Breemen and van Dijk, 1988; van
der Eerden, 1988; Boukcim et al., 2001; Hawkins and George, 2001).
This reduction can be particularly problematic, for instance, on phos-
phate-limited soils (Bolan et al., 1991). In general, plant responses to
excessive inorganic nitrogen depend strongly on nitrogen source, dose,
and genetic predisposition (Givan, 1979; Magalhaes and Huber, 1991;
Britto and Kronzucker, 2002).

With the increasing use of fertilizer globally (nearly a 10-fold in-
crease between 1950 and 2000; Brown, 2001), the impact of excess re-
active nitrogen in agricultural and natural environments has become a
subject of considerable recent attention (Nihlgard, 1985; de Graaf et al.,
1998; Galloway et al., 2002). Although it should be noted that most for-
est ecosystems, at least in North America, remain N-limited (Fenn et al.,
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1998), [NH4
+] values in forest-floor soil solutions can range as high as

0.4 to 4 mM [NH4
+] in boreal and temperate forest ecosystems (based

on Robertson, 1982; Vitousek et al., 1982; and Bijlsma et al., 2000;
Kronzucker et al., 2003a). In agricultural soils, [NH4

+] can be substan-
tially higher, often ranging from 2 to 20 mM (Wolt, 1994), and even at-
mospheric deposition of NH3/NH4

+ from agricultural sources is known
to cause nitrogen eutrophication in natural ecosystems adjacent to
farmland (Nihlgard, 1985).

As membrane fluxes constitute the primary step in N acquisition for
plants, they strongly determine growth potential at low ambient concen-
trations of N. On the other end of the soil-[N] scale, they provide (or re-
strict) the entry pathway for excessive, potentially toxic, quantities of
nitrogen. This chapter will focus specifically on the membrane transport
of inorganic nitrogen into the plant cell, and its regulation within the
context of these temporally and spatially dynamic distributions of soil N.

GROWTH RESPONSES ON VARIABLE N

Figure 1 shows a generalized growth-response curve for plants pro-
vided with varying supplies of NO3

� and NH4
+. As with other nutrients,

a broad plateau of growth is usually observed with N nutrition (note log-
arithmic x-axis in Figure 1), over which growth rates and tissue N con-
tents are largely unaffected by changes in N provision (Clement et al.,
1978). This plateau is flanked to the left by a region of N-limited
growth, and to the right by a region of growth suppression caused by N
toxicity. The threshold concentration at which toxic effects of NH4

+ be-
come pronounced tends to be much lower than that for NO3

� (Figure 1),
although this value varies substantially with plant species and other nu-
tritional factors, particularly K+ supply (Britto and Kronzucker, 2002;
Kronzucker et al., 2003b). Some evidence indicates that the soil [NH4

+]
at which toxicity occurs is lower for slower-growing species such as
poplar and Douglas-fir trees, relative to faster-growing species such as
grasses (Britto et al., 2001; Kronzucker et al., 2003a). Because of its
high [NO3

�] threshold, nitrate toxicity in plants is not an issue of great
agronomic importance, although some reports have documented symp-
toms of this condition, such as chlorosis and growth inhibition (Reddy
and Menary, 1990; Bennett et al., 1992). Nevertheless, high nitrate con-
tents in plant tissues can become a toxicity problem in humans, livestock,
fish, and other animals, when plant-derived nitrate is reduced to nitrite,
creating the risk of methemoglobinemia (Bruningfann and Kaneene,
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1993a,b). Therefore, preventing excessive NO3
� accumulation in crop

species is of substantial practical interest.

HIGH-AFFINITY N TRANSPORT:
N-DEPENDENT CHANGES IN VMAX AND KM

Ion transport proteins situated in the membranes of plant cells typi-
cally operate with saturable, Michaelis-Menten-type kinetics when trans-
porting inorganic-N substrates in the low-concentration, or “high-affin-
ity transport system” (HATS), range (typically < 1 mM; Figure 2).
These kinetics are well established for inorganic N, and variations in
KM and Vmax values for N influx, as a function of N supply, illustrate
substantial phenotypic plasticity and reflect the growth responses seen
in Figure 1. For example, in one cultivar of rice (cv. M202), as the
steady-state external NH4

+ concentration is increased from 2, to 100, to
1000 µM, the Vmax for high-affinity transport decreases from 12.8, to
8.2, to 3.4 µmol g�1 h�1, respectively, while the KM values increase
from 32, to 90, to 188 µM (Figure 2a; Wang et al., 1993b). Thus, as the
substrate becomes limiting, both the maximum flux and the substrate
affinity of the system increase. Changes in KM and Vmax have also been
observed for high-affinity influx of NO3

�, in trempling aspen (Populus
tremuloides) and lodgepole pine (Pinus contorta) (Min et al., 2000).
However, concentration-dependent changes in KM are not universally
observed either for NH4

+ uptake (Kronzucker et al., 1998a; Rawat et al.,
1999; Min et al., 2000) or NO3

� uptake (Siddiqi et al., 1990). In Figure
2b, for instance, a comparison of NO3

� influx in barley plants grown on
100 µM or 10 mM external [NO3

�] for four days shows a suppression of
the Vmax for NO3

� influx under the high-N condition, but no systematic
change in the KM is observed as this acclimation proceeds. Clearly, the
relationships between substrate availability and substrate affinity for
the enzyme are not always simple; these biological complexities are
compounded by the difficulties in ascertaining reliable KM values in
heterogeneous cellular systems such as root tissues, and with difficul-
ties arising from use of kinetic data transformation (i.e., linearization of
rectangular hyperbolae; see Kronzucker et al., 1995d). Kinetic data are
further complicated by the influx-protocol problems that arise from
efflux occurring concurrently with influx (Britto and Kronzucker, 2001a,
2003), and by the likelihood of the concurrent operation of products of
several members of the same gene family, kinetic distinctions among

6 Enhancing the Efficiency of Nitrogen Utilization in Plants



Physiology and Adaptive Mechanisms 7

2 M-grownµ

100 M-grownµ

1000 M-grownµ

14

12

10

8

6

4

2

0

N
H

in
flu

x
(

m
ol

g
h

)
4+

1
1

µ
�

�

0 100 200 300 400 500 600 700 800 900 1000

[NH ] (µM)4 external
+

FIGURE 2. Isothermic patterns of nitrogen influx in the high-affinity concentra-
tion range, as influenced by nitrogen source and supply. a. NH4

+ influx (adapted
from Wang et al., 1993b); b. NO3

� influx (adapted from Siddiqi et al., 1990).

a.

0 100 200 300 400 500 600 700 800 900 1000

[NO ] (µM)3 external
�

10 M-grown, 4-dµ

100 M-grown, 1-dµ

100 M-grown, 4-dµ

10

9

8

7

6

5

4

3

2

1

0

N
O

in
flu

x
(

m
ol

g
h

)
3�

�
�

µ
1

1

b.



which are below the detection limits of the established methodology
(Glass et al., 2001).

Notwithstanding uncertainties in KM, changes in Vmax are a consis-
tent hallmark of plant root adaptation to changing environmental N,
suggesting that, physiologically, Vmax is the more important of the two
kinetic parameters. Evidence from molecular studies, in which putative
transporter gene expression and transport function are often fairly well
correlated (Krapp et al., 1998; Zhou et al., 1999; Rawat et al., 1999; but
see below for exceptions), supports the idea that the flexibility in Vmax
reflects the variable synthesis of transport proteins, rather than the mod-
ification (e.g., allosteric, or via phosphorylation) of a constitutively-ex-
pressed pool of transporters. The result of this flexibility is a situation in
which influx, when measured at the specific substrate concentration to
which the plant has become acclimated, is uniform over a plateau simi-
lar to the growth plateau in Figure 1 (Peuke and Tischner, 1991). As
with other nutrients (e.g., phosphate and potassium), it is clear that inor-
ganic nitrogen fluxes, at least in the low concentration range (but see
below), respond inversely to external supply.

INDUCTION OF NITROGEN TRANSPORT

A crucial element of NO3
� nutrition is that nitrate acts as a signal to

induce the synthesis of proteins involved in its own acquisition and as-
similation. This is true not only for the inducibility of key catabolic en-
zymes such as nitrate and nitrite reductases, but also of the transporter
proteins mediating high-affinity NO3

� influx into root cells (Crawford
and Glass, 1998; Forde, 2000). In addition to inducible transporters, a
class of high-affinity (but very low-capacity) nitrate transporters oper-
ates constitutively in root systems, permitting initial entry of NO3

� into
the cell without prior exposure of the plant to NO3

�. Reception of NO3
�

(probably within the cell; but see below) stimulates the expression of
the inducible systems at transcriptional and functional levels, resulting
in much higher NO3

� fluxes after a few hours in many herbaceous
plants (e.g., a 30-fold increase after 24 h in barley, as reported by
Siddiqi et al., 1990), and after periods of several days in conifers such as
white spruce (Kronzucker et al., 1995d) and lodgepole pine (Min et al.,
1998). Typically, however, maximal NO3

� fluxes achieved during the
induction process are not sustained, and a downregulation ensues, as de-
picted in Figure 2a for barley plants exposed to 100 µM NO3

� for one to
four days. The general pattern for transport induction and downreg-
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ulation in the high-affinity [NO3
�] range is shown in Figure 3. This be-

havior is sharp contrast to the reverse condition seen with NH4
+ nutrition,

in which the maximal rates of high-affinity uptake are found in plants
with no prior exposure to NH4

+ (Figure 3). Upon introduction of NH4
+,

a rapid downregulation of high-affinity NH4
+ influx is generally ob-

served, which is fundamentally different from the rapid induction of
NO3

� transport that is followed by a slower downregulation to a
steady-state level, which remains higher than the uninduced level.

A few reports, nevertheless, have suggested an inductive effect of
NH4

+ on its own transport (Goyal and Huffaker, 1986; Morgan and
Jackson, 1988; Jackson and Volk, 1992; Mäck and Tischner, 1994).
The largest increase in NH4

+ transport following provision of the ion
was reported to be only about 3-fold higher than the pre-treatment
value, in wheat plants (Goyal and Huffaker, 1986), a modest change
compared with values typically seen with NO3

� induction. Moreover,
in that study, the NH4

+ concentration in the medium was allowed to de-
plete, allowing the plant to adapt to a situation of increasing N depriva-
tion, which could alternatively explain the reported rise in NH4

+ uptake
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over time. More generally, the moderate, transient, upregulation some-
times observed may be explained in terms of increased N transport to
the shoot upon NH4

+ provision (Kronzucker et al., 1998b). It should
also be noted that NH4

+ is an intermediate in a wide variety of biochemi-
cal reactions (Joy, 1988), and can accumulate within plant tissues to
substantial levels (Wang et al., 1993a; Kronzucker et al., 1995a, b;
Husted et al., 2000) even when not provided externally (Olsen et al.,
1995), to the extent that emissions of gaseous ammonia (NH3) from the
plant can be observed (Mattsson and Schjoerring, 1996). Because of
this, it is difficult to conceive that NH4

+ can act as a signal for its own
acquisition, except in the unlikely case of it acting as such only in quan-
tities exceeding a high baseline concentration. Finally, the functional
significance of the proposed induction is questionable, in that the
steady-state flux in the HATS range is actually lower than that observed
prior to NH4

+ exposure (Figure 3).
The exact nature of the signal transduction mechanism by which

NO3
� initiates the upregulation of its own acquisition pathway (along

with numerous other biochemical pathways, including photosynthesis
and respiration–see Scheible et al., 2004) is still undetermined in higher
plants. Indeed, it is not known whether the initial NO3

� sensor is situ-
ated on the external face of the plasma membrane, or is intracellular, re-
quiring that induction be triggered by NO3

� transport via constitutive
transport systems. While it has been shown that induction of pro-
karyotic NO3

� acquisition in E. coli involves an external sensor (Parkin-
son and Kofoid, 1992), the situation for plants and algae is equivocal.
Redinbaugh and Campbell (1991) proposed the idea of an external
NO3

� sensor for higher plants, observing that plants with an uninduced
NO3

� assimilation pathway can nevertheless have significant tissue
NO3

� content. However, if tissue NO3
� is sequestered in the vacuole, a

NO3
� sensor may still operate in the cytosolic compartment of the cell

(Siddiqi et al., 1989). Forde and Clarkson (1999) dismiss this latter pos-
sibility, citing evidence from NO3

�-selective microelectrodes (van der
Leij et al., 1998) that suggests that the NO3

� concentration in the
cytosol is held constant at ~4 mM, even under conditions in which the
plant is uninduced. This evidence, however, is contradicted by demon-
strations of substantial variability in cytosolic [NO3

�] as determined by
other methods, particularly compartmental analysis by tracer efflux
(Lee and Clarkson, 1986; Siddiqi et al., 1991; Devienne et al., 1994;
Kronzucker et al., 1995c; 1999a,b; Min et al., 1999; Britto and Kron-
zucker, 2001b, 2003), as well as comparisons of in vivo and in vitro ni-
trate reductase (NR) activities (Robin et al., 1983; Belton et al., 1985;
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King et al., 1992), tracer influx profiles (Presland and MacNaughton,
1984), and NMR signals (G. Ratcliffe, personal communication). Con-
trary to Forde and Clarkson (1999), then, the plausible variability of the
cytosolic NO3

� pool makes the proposal that this pool functions as a
modulator of the induction state of the cell a reasonable one. Other re-
cent evidence that the NO3

� sensor might be intracellular has come
from manipulations of cytosolic NO3

� levels, either by the suppression
of NO3

� uptake in barley by supplying plants with ammonium or amino
acids (Aslam et al., 2001), or by use of mutant strains of Chlamyd-
omonas with impaired nitrate reductase and nitrate transport activities
(Rexach et al., 2002). Recently, however, Unkles et al. (2001) have pro-
posed that the induction of nitrate reductase observed in Aspergillus
nidulans mutants lacking NO3

� uptake also argues for an external
NO3

� sensor, although the authors point out that NO3
� might have en-

tered the mutant cells in sufficient quantities to trigger induction, at
rates below the threshold of detection.

AGENTS OF DOWNREGULATION

While it is clear that high-affinity NH4
+ and NO3

� transport de-
creases with increasing plant N status, the chemical nature of the agents
responsible for this decrease has been another area of controversy. It has
been widely proposed that end-product downregulation of N-assimila-
tion pathways (including transport functions) by amino acid pools is the
major means of control for high-affinity NO3

� and NH4
+ uptake (Breteler

and Siegerist, 1984; Lee and Rudge, 1986; Cooper and Clarkson, 1989;
Lee et al., 1992; Imsande and Touraine, 1994; Barneix and Causin,
1996; Rawat et al., 1999; Zhou et al., 1999; Forde, 2000; Vidmar et al.,
2000; Aslam et al., 2001; Pal’ove-Balang and Mistrik, 2002; Gessler et
al., 2004). In the case of NO3

�, several lines of evidence support this
idea, including the inverse correlation between tissue amino acid con-
centrations and NO3

� uptake, suppression of NO3
� uptake by exoge-

nous application of amino acids (e.g., via solution culture to roots, or via
foliar feeding), and enhancement of NO3

� uptake by inhibitors of
amino acid synthesis such as methionine sulfoximine (MSX). Use of
aminotransferase inhibitors such as aminooxalacetic acid (AOA) and
azaserine (AZA), which increase tissue levels of glutamate and gluta-
mine, respectively, have indicated the high feedback potency of these
particular amino acids (Zhou et al., 1999), although there are indications
that arginine, which possesses an exceptionally high N:C ratio, may be
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even more important (Forde, 2000). Some caution, however, should be
exercised in the interpretation of studies investigating these questions,
which usually involve quantification of the total tissue content of puta-
tive regulatory agents, but fail to localize them to specific subcellular
compartments. In addition, the exogenous application of amino acids is
complicated by the possibility of their rapid interconversion within the
plant (Glass et al., 2001), as well as their differential, and poorly charac-
terized, uptake rates (Lipson and Näsholm, 2001).

Substantial evidence indicates that the inorganic transport substrates
(NO3

� and NH4
+) themselves might be regulatory agents feeding back

negatively on their own uptake. With NO3
�, the use of mutants defi-

cient in nitrate reductase activity (King et al., 1993; Wieneke, 1994),
and the use of tungstate (WO4

�) to block nitrate reductase (Ingemarrson
et al., 1987; King et al., 1993; Wieneke, 1994), resulted in lowered tis-
sue amino acid and (where measured) increased tissue NO3

� pools, but
downregulation of NO3

� influx was nevertheless observed. At the level
of genetic analysis, it is of further interest that while the use of WO4

� in
barley plants resulted in an increase in transcript abundance of a high-
affinity nitrate transporter (Krapp et al., 1998; Vidmar et al., 2000), the
actual measured influx under this condition was ~55% lower than in
control plants (Vidmar et al., 2000). This result suggests that NO3

� may
act as a post-transcriptional inhibitor of its own transport (e.g. via
allostery, phosphorylation, or thermodynamic means), rather than as a
repressor (like some amino acids) of the transcription of transport-en-
coding genes (Forde and Clarkson, 1999). More generally, the dis-
crepancy between abundance of transport-protein mRNA and actual
transport indicates that the physiological interpretation of northern blots
is not always as straightforward as it might appear.

Ambiguities are also seen in the regulation of NH4
+ transport. Appli-

cations of MSX to plant roots, for instance, which raise [NH4
+] and

lower amino acid concentrations in tissue, have resulted in some in-
stances in which NH4

+ influx is reduced (Feng et al., 1994; Kronzucker
et al., 1995a; Rawat et al., 1999), and others in which it is increased
(Jackson et al., 1993; Lee and Ayling, 1993; Feng et al., 1994; Wieneke
and Roeb, 1998). The first group of studies suggest that NH4

+ is a potent
inhibitor of its own influx, or perhaps that MSX, being a glutamine ana-
log, itself acts as an agent of negative feedback. The latter possibility
suggests that, instead of NH4

+, the controlling agents are the amino acid
concentrations in the tissue.

In general, the controversies discussed here might be explained by
the likelihood that ammonium and nitrate uptake and metabolism have
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multiple points of regulation. It should, for instance, be considered that
the uptake of inorganic N by root cells can be controlled by the influence
of the shoot on root-cell pools of regulatory agents via long-distance
transport. Split-root experiments have shown that nitrogen cycling via
the xylem and phloem can exert powerful effects on N uptake (Cooper
and Clarkson, 1989; Imsande and Touraine, 1994). N acquisition can
also be modulated via changes in the extent of efflux (Siddiqi et al.,
1991). The overall pattern of flux dynamics in the plant may thus be
maintained by multiple mechanisms within the dictates of the growth
and development pattern of the plant; this pattern may be linked to a
timing mechanism that governs in cytosolic organic N turnover in the
cytosolic compartment of plant cells (Britto and Kronzucker, 2001b).

LOW-AFFINITY TRANSPORT SYSTEMS

Plants taking up NO3
� and NH4

+ from higher external concentrations
(> 1 mM) have high-capacity uptake kinetics very different from those
observed in the low-concentration range. Instead of saturating patterns
of influx, linear responses to changes in external concentration are
typically observed in this “low-affinity transport system” (LATS) con-
centration range (Figure 4), suggesting the operation of channel-type
transport proteins with very high saturation limits (particularly in the
case of NH4

+, the influx of which is energetically passive for most
LATS-range soil-NH4

+ concentrations). In response to changing N
availability in this concentration range, substantial differences in flux
modulation can be seen between NO3

� and NH4
+ transport systems

(Figure 4). With NO3
�, the highest LATS-range fluxes at a given exter-

nal concentration are found in plants that have had no recent exposure to
NO3

�. Treatment with NO3
� in this range downregulates influx within

a few days, the extent of the downregulation dependent on external
[NO3

�] (Figure 4b). Surprisingly, this situation is reversed with NH4
+

nutrition, in which the highest fluxes observed are in plants adapted to
the highest external [NH4

+] (Figure 4a; Wang et al., 1993b; Rawat et al.,
1999; Min et al., 2000; Cerezo et al., 2001).

Lest low-affinity N transport systems be considered irrelevant in an
ecological context, it should be pointed out that soil concentrations of
NH4

+ and NO3
� can at times reach magnitudes that lie well within the

response range of LATS, particularly in agricultural soils but also in
natural ecosystems (see Introduction). The lack of downregulation in
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the NH4
+-LATS range could significantly account for the low threshold

for NH4
+ toxicity in most plants (Britto et al., 2001; Kronzucker et al.,

2001; Britto and Kronzucker, 2002; Britto et al., 2002; Kronzucker et
al., 2003a). An enhanced flux of NH4

+ can result in the accumulation of
large amounts of NH4

+ in the plant, both on a tissue basis, and, specifi-
cally, in the cytosol of root cells. This accumulation is associated with
two effects that have been linked to NH4

+ toxicity in plants. First, tissue
(and cytosolic, in some cases) concentrations of nutritionally important
cations such as K+, Ca2+, and Mg2+ drop significantly with NH4

+ excess
(Magalhaes and Wilcox, 1983; Holldampf and Barker, 1993; Speer and
Kaiser, 1994; Gloser and Gloser, 2000; Kronzucker et al., 2003a), re-
sulting in pathological conditions with symptoms similar to those seen
under deprivation of these nutrients. Second, increased NH4

+ influx is
strongly associated with an even greater increase in NH4

+ efflux (with
efflux approaching 100% of influx). Efflux transporters appear to func-
tion in the release of excessive amounts of this ion from root cells, in a
manner similar to that of antibiotic-resistant bacteria pumping lethal
substances out of the cell (Britto et al., 2001). Because of the in-
wardly-negative electrical polarization of the plant plasma membrane,
the efflux component of NH4

+ transport is often energy-demanding, de-
spite the high cytosolic accumulation of NH4

+ observed under condi-
tions of NH4

+ toxicity. Given the very substantial magnitude of NH4
+

efflux (~50 µmol gfw�1 h�1), the energy requirement could account for
much, if not all, of the large (40%) increase in respiratory oxygen con-
sumption observed with NH4

+-sensitive barley plants under these con-
ditions (Kronzucker et al., 2001). Interestingly, NH4

+-tolerant rice plants
show no such respiratory increase, and display neither an uphill electro-
chemical gradient for NH4

+ efflux across the plasma membrane, nor
NH4

+ fluxes of the magnitude seen in barley (Britto et al., 2001).

CONCLUSION

While the above discussions focus on details of cellular mechanisms,
it is important to consider that such mechanisms, and their modulations
in response to both limited and excessive supply of nitrogen, have pro-
found influences on plant growth and yield. For this reason, the events
and biochemical agents causing up- and downregulation of N fluxes,
and the energetic costs of excess NH4

+ fluxes, have important implica-
tions both for ecological processes and for the human food supply.
Thus, their effects need to be considered by those who would seek to
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improve plant N acquisition either by conventional breeding or biotech-
nological means, particularly under conditions in which N is not limit-
ing (Britto and Kronzucker, 2004; cf. Britto and Kronzucker, 2001b).
Raising the capacity of plant roots to absorb N from soil might alterna-
tively be achieved by providing the plant with mixed sources of nitro-
gen, which can maximize the total plant capture of N, simultaneously
increasing plant yield and diminishing eutrophication (Kronzucker et
al., 1999a). Ultimately, the challenge lies in the extension of physiologi-
cal findings to practical applications in agricultural and natural ecosys-
tems.
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