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† Background Plants can utilize two major forms of inorganic N: NO3
2 (nitrate) and NH4

+ (ammonium). In some cases,
the preference of one form over another (denoted asb) can appear to be quite pronounced for a plant species, and can be
an important determinant and predictor of its distribution and interactions with other species. In many other cases,
however, assignment of preference is not so straightforward and must take into account a wide array of complex
physiological and environmental features, which interact in ways that are still not well understood.
† Scope This Viewpoint presents a discussion of the key, and often co-occurring, factors that join to produce the
complex phenotypic composite referred to by the deceptively simple term ‘N-source preference’.
† Conclusions N-source preference is much more complex a biological phenomenon than is often assumed, and
general models predicting how it will influence ecological processes will need to be much more sophisticated
than those that have been so far developed.
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INTRODUCTION

Terrestrial plants take up inorganic nitrogen from the soil mainly
in the forms of ammonium, NH4

+ and nitrate, NO3
2, two ions that,

when acquired, have highly distinct genetic and metabolic
consequences in the plant (Haynes and Goh, 1978; Britto and
Kronzucker, 2002, 2005a; Stitt et al., 2002). Some plant
species have been shown to produce more biomass, or accumu-
late greater quantities of nitrogen, when growing on one N
source compared with another, i.e. they appear to display a pref-
erence. Despite the importance of N as a frequently growth-
limiting nutrient in both agricultural and wild ecosystems
(Tilman, 1985; Vitousek and Howarth, 1991), however, no
precise definition of N-source preference (denoted here as
b, after Boudsocq et al., 2012) has emerged in the literature,
nor has a robust, broad classification of plant species adapted
to NO3

2 or NH4
+ (although a few preliminary attempts have

been made, e.g. Krajina et al., 1973; Falkengren-Grerup, 1995;
Britto and Kronzucker, 2002). This is in part because the interac-
tions between plant acquisition of NO3

2 or NH4
+ and multiple

environmental variables, such as temperature, soil pH and
nutrient supply, produce a complex of effects that can greatly
influence and shift plant growth responses to variable N
sources. In an ecological setting, this physiological complexity
is compounded by the variability inherent in many ecosystems,
where large changes in soil characteristics frequently occur
over short distances and short spans of time (Hodge, 2004). In
this paper we shall discuss the complexities involved in accurate-
ly modelling b within ecological contexts, and the significance
of such preferences for ecological processes such as succession.

PHYSIOLOGICAL UNDERPINNINGS
OF N-SOURCE DIFFERENCES

The reasons underlying apparent N-source preferences are
poorly understood, but include ammonium toxicity in nitrate

specialists (Gerendás et al., 1997; Britto and Kronzucker,
2002) and atrophied nitrate uptake systems in the roots of ammo-
nium specialists (Kronzucker et al., 1997). Fundamental ques-
tions remain unanswered in this branch of physiology, such as
that of why many plants, especially agricultural crop species
and early-successional pioneer species, appear to prefer NO3

2

to NH4
+, despite the fact that NO3

2 must be taken up against a
steep electrochemical gradient, then reduced to NH4

+ before
entering the organic N pool. Both processes require a consider-
able additional expenditure of fixed carbon compared with
NH4

+ acquisition (Bloom et al., 1992; Kurimoto et al., 2004;
Britto and Kronzucker, 2005a). One answer to this appears to
lie in the rapid entry of NH4

+ into roots, which occurs even in
NO3

2 specialists, and can result in pronounced accumulation of
NH4

+ (Givan, 1979; Gerendás et al., 1997; Britto et al., 2001).
Ammonium build-up can consequently have toxic effects,
including the suppressed uptake of important cationic nutrients,
such as K+, Ca2+ and Mg2+ (Kirkby, 1968; Salsac et al., 1987;
van Beusichem et al., 1988; Lewis, 1992; Britto and Kronzucker,
2002). By contrast, NO3

2 toxicity is fairly uncommon and typically
occurs at very much higher soil concentrations (Britto and
Kronzucker, 2005b, and references therein). Among the strategies
used by plants to decrease the amount of free NH4

+ in tissues
is increased NH4

+ assimilation (Givan, 1979; Magalhaes et al.,
1995; Gerendás et al., 1997; Schortemeyer et al., 1997).
However, this requires an elevated supply of carbohydrate to the
roots, because only a small amount of NH4

+ is translocated to
shoots (Wang et al., 1993; Kronzucker et al., 1998; Finnemann
and Schjoerring, 1999), leaving less reduced carbon available for
growth and maintenance (Lewis, 1992). Another strategy is to
increase the efflux of NH4

+ to the external medium, which can,
however, result in an energetically costly futile cycle (Britto
et al., 2001; Li et al., 2012). Energy lost in this cycle, in addition
to the frequently suggested uncoupling of energy gradients in
cellular organelles by NH4

+ (Krogmann et al., 1959; Crofts, 1967;
this possibility is disputed, however – see Gerendás et al., 1997;
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Britto and Kronzucker, 2002), may eliminate any energetic advan-
tages conferred by the uptake of reduced N. Although elevated res-
piration under high-NH4

+ conditions has been attributed to futile
NH4

+ cycling in roots (Britto et al., 2001), the link between carbo-
hydrate limitation and preference against NH4

+ is not straightfor-
ward, since increased light intensity may aggravate rather than
alleviate NH4

+ toxicity (Gerendás et al, 1997; Zhu et al., 2000).
Deficiency, sufficiency and toxicity occur for both inorganic

N forms, with very different set points, and growth optima are
expected and commonly observed (Fig. 1; Gray, 1983; Eck,
1984; Westfall et al., 1990; Miller and Timmer, 1994; Padgett
and Allen, 1999; Cabrera, 2000; Gan et al., 2012; Hall, 2002).
Such optimum curves, and how they differ with N source for a
given plant species, should inform any fundamental appraisal
of the N-source preference(s) of that species, since they are dir-
ectly linked with plant productivity. Root transport systems spe-
cific for NO3

2 and NH4
+ acquisition fundamentally influence the

shapes of growth–response curves , since their activities not only
determine the amount of excessive, detrimental transport that
may occur at high substrate concentrations (Britto et al., 2001)
but also govern the lowest soil N concentration from which a
species can abstract the limiting resource and at which it can
survive. This concentration minimum is frequently referred to
as the Cmin, and may be as low as �0.001 mM for both NO3

2

and NH4
+ (Deane-Drummond and Chaffey, 1985; Marschner

et al., 1991). The Cmin concept is important in modelling pro-
cesses such as competition and succession, and is similar to
important ecological principles such as Justus von Liebig’s
‘law of the minimum’, and Tilman’s R* rule, which predicts
the outcome of competitive interactions between species based
on their ability to survive on the lowest amount of a limiting
resource (Tilman, 1982; McGill 2005; Wilson et al., 2007).
However, it should be emphasized here that Cmin (like b, as
will be discussed) is not constant for a plant species, but varies
with root activity, which in turn strongly depends on factors
such as temperature and plant nutrient status (Drew et al.,
1984; Marschner et al., 1991).

Because the regulation of inorganic N transport largely deter-
mines the uptake of nutrients at both limiting and toxic concentra-
tions, it is crucial to examine it in the present context. Particularly
important is the physiological principle that the transport systems
moving inorganic N across root plasma membranes, as well as the
metabolic systems assimilating N within the cell, are typically
downregulated by increasing soil nutrient content, especially

that of N itself (Glass et al., 2002; Tang et al., 2012). The curves
in Fig. 2 exemplify this pattern of regulatory feedback by long-
term N supply and plant N status on the kinetics of N uptake
(Wang et al., 1993; Rawat et al., 1999; Kronzucker et al., 2000).
Similar patterns are seen for both NO3

2 and NH4
+, but with

unique kinetic parameters for each. It is important to note that
these curves are typically hyperbolic in shape, as in Monod or
Michaelis–Menten equations, under most ecologically relevant
supply conditions; in other words, they saturate, as does the
growth response to increasing soil N. Under toxicity or ‘luxury
consumption’ conditions, however, linearly rising patterns of uni-
directional influx are sometimes observed, but elevated influx is
largely compensated for by elevated efflux under these conditions
(BrittoandKronzucker,2006)anddoesnot translate into increased
growth (Gezeliusand Näsholm,1993; de Mazancourt et al., 2012).
An added layer of regulatory complexity can be seen in the case of
the nitrateacquisition apparatus,which is greatly downregulated in
the absence of NO3

2 (Kronzucker et al., 1999a; Glass et al., 2001).
The induction of this apparatus by the appearance of nitrate can be
quite rapid in some species, taking only a few hours (Siddiqi et al.,
1989; Kronzucker et al., 2000), while in others, such as white
spruce, it can take several days (Kronzucker et al., 1995; Min
et al., 1998).Once stimulated, NO3

2 transport is usuallydownregu-
lated by further NO3

2 acquisition, but this is not well understood;
there appear to be species-specific differences in the metabolites
responsible for this effect (Glass et al., 2002; Tang et al., 2012).
Regardless of the mechanism, it is well known that changes in
soil N pools can exert powerful influences on N-acquisition char-
acteristics, and bring changes in apparent N-source preferences,
even at sub-toxic concentrations (Tylova-Munzarova et al.,
2005; Munzarova et al., 2006; Houlton et al., 2007).

Many other environmental factors influence the uptake of
N, with divergent effects found for NO3

2 and NH4
+. One of the

most important is soil temperature (Haynes and Goh, 1978;
Sasakawa and Yamamoto, 1978; Clarkson and Warner, 1979;
Kafkafi, 1990; Macduff and Jackson, 1991; Gessler et al.,
1998; Vaast et al., 1998; Kumar et al., 2008), which can fluctuate
greatly on time scales of months, days or hours. In general, NO3

2

uptake appears to be more inhibited by low temperature than does
NH4

+ uptake (Frota and Tucker, 1972; Clarkson et al., 1994),
which can be explained by its higher energy requirement for
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FI G. 2. Influence of plant N status on concentration-dependent N-uptake
kinetics by plant roots. Generalized from published data (see citations in text).
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acquisition and reduction (see above). Soil pH also shows high
variability (Farley and Fitter, 1999) and affects NO3

2 and NH4
+

transport differentially, with optima tending to be more alkaline
for NO3

2 uptake than for NH4
+ uptake (Haynes and Goh, 1978;

von Wirén et al., 1997; Hawkins and Robbins, 2010). This is
somewhat surprising given that there is a higher proton require-
ment for NO3

2 uptake than for NH4
+, since it is driven by a

proton-symport mechanism (McClure et al., 1990; Britto and
Kronzucker, 2006; Miller et al., 2007), while NH4

+ uptake prob-
ably occurs in a uniport manner, in exchange for protons (though
not directly coupled to H+ transport), under most conditions
[Ludewig et al., 2002; Mayer et al., 2006; at very low concentra-
tions, NH4

+ uptake involves a symport mechanism with protons
(Ortiz-Ramirez et al., 2011), while at high concentrations NH3

permeation may be possible through aquaporins (Jahn et al.,
2004)]. The mechanisms of transport for the two ions themselves
have distinct consequences for soil pH: alkalinization by NO3

2

nutrition and acidification by NH4
+ nutrition (Raven and Smith,

1976; Runge, 1983; van Beusichem et al., 1988; Marschner
et al., 1991; Falkengren-Grerup, 1995; Britto and Kronzucker,
2002). These processes can result in unpredictable feedback
cycles that can be intensified by other factors, such as (1) inhib-
ition of nitrification rates by soil bacteria as the rhizosphere acid-
ifies (Haynes and Goh, 1978; Falkengren-Grerup, 1995) and (2)
changes in the availability of nutrients, such as P, or toxicants,
such as Al, as soil pH changes differentially depending on
which N source dominates in plant acquisition patterns (Riley
and Barber, 1971; Ruan et al., 2000).

Other major components of plant nutrition interact profoundly
with plant roots to produce divergent effects when grown on
NO3

2 or NH4
+. One of the most notable examples of this is the

alleviation of NH4
+ toxicity by K+ supply (Mengel et al., 1976;

Santa-Maria et al., 2000; Roosta and Schjoerring, 2008;
Balkos et al., 2010; ten Hoopen et al., 2010; Li et al., 2012).
Another lies in the interactions between NH4

+ and NO3
2 them-

selves, such as the significant, and variable, inhibition of NO3
2

uptake by NH4
+ (Minotti et al., 1969; Lee and Drew, 1986;

Marschner et al., 1991; Kreuzwieser et al., 1997; Kronzucker
et al., 1999a) and the synergistic effect on N uptake and
growth often seen when the two N sources are combined (Cox
and Reisenauer, 1973; Kronzucker et al., 1999a, b). A third
important example is seen in the strong interactions between
carbohydrate supply and growth on different N sources (Haynes
and Goh, 1978; Aslam et al., 1979; Givan, 1979; Kafkafi, 1990),
while a fourth is that between inorganic and organic
N. Regarding this last example, inorganic vs. organic, the soil
N content in some ecosystems, such as boreal forests, can be pre-
dominantly in the form of amino acids, which can be taken up by
roots in substantial quantities (Näsholm et al., 1998; Lipson and
Näsholm, 2001). This has significance in terms of providing an
alternative source of N when this resource is limiting, thus redu-
cing plant demand for NO3

2 and NH4
+. Moreover, the downregu-

latory effect of amino acids on the uptake of NO3
2 and NH4

+ is
well known (Imsande and Touraine, 1994; Padgett and
Leonard, 1996; Rawat et al., 1999; Gessler et al., 2004).

Further complex nutritional interactions of broad significance
should be mentioned here, and can be considered in three groups.
The first group consists of interactions among N source, soil
moisture and water use. For instance, increased drought adapta-
tion has been observed with NH4

+ nutrition in some cereals

(Mihailović et al., 1992; Yin and Raven, 1998; Guo et al.,
2008), while other studies, mainly in dicotyledons, have shown
decreased water-use efficiency under NH4

+ (Raven et al., 1992;
Høgh-Jensen and Schjoerring, 1997; Claussen, 2002; Lu et al.,
2005). Moreover, in a striking study of N-source preference
among a functionally diverse group of tropical forest species,
Houlton et al. (2007) showed abrupt community-wide changes
in b resulting from changes in precipitation. These authors
found that NO3

2 was the preferred source for all species under
dry conditions, while in the wettest soils NH4

+ was almost exclu-
sively used.

The second group of interactions are those between N source
and light intensity. Light plays a key role in regulating key com-
ponents of the NO3

2-acquisition pathway (Stitt et al., 2002),
while NH4

+-grown plants tend to be more sensitive to light
stress than NO3

2-grown plants (Magalhaes and Wilcox, 1983;
Zornoza et al, 1987; Zhu et al., 2000).

The third group of interactions are those between N source
and changes in atmospheric CO2: this topic, of considerable
recent interest, has yielded mixed results, but elevated CO2 can
produce considerable differential effects on the acquisition of
NO3

2 and NH4
+, at times causing switches in plant preference

(Bassirirad et al., 1996, 1997; Zerihun and Bassirirad, 2001).
The plasticity of plant responses to environmental variability

reflects the complexity inherent in all ecosystems. This is particu-
larly true in the case of the multifarious environmental factors
influencing b, which must be included when comprehensively
modelling the ecological consequences of such preferences.
For example, even a seemingly simple agricultural system such
as a rice paddy can be dauntingly complex in terms of modelling
nitrification and nitrate use (Kirk and Kronzucker, 2005), since
these activities, and the resulting magnitudes of N pools, can
vary substantially over temporal and spatial scales. Indeed, the
modelling of nitrification alone can require the consideration
of as many as nine independent processes (Vitousek and
Melillo, 1979). Moreover, the horizontal and vertical patchiness
of soils with respect to water and nutrients is well known (Hodge,
2004); the variability of resources can be as great over the rooting
zone of a plant as it is over a 120-m2 plot (Jackson and Caldwell,
1993). Such patchiness extends to substantial, and unpredictable,
temporal variations in nutrient availability, including that of
NH4

+ and NO3
2 (Drew and Saker, 1975; Farley and Fitter,

1999). An additional layer of complexity arises from the ability
of vegetation to strongly influence the nutrient composition of
soils; in one study, 10-fold variation in net mineralization was
observed within 3 years in initially identical soils, as a result of
the presence of different plant species (Wedin and Tilman,
1990). In all these considerations, it is important to understand
that nutrient pool sizes do not necessarily reflect the importance
of a pool in an ecosystem. While some pools may be small, this
may simply be due to the very rapid turnover caused by intensive
utilization and replenishment of the pool (Robertson and
Vitousek, 1981; Schulze et al., 1994; Eviner and Chapin,
1997; Hart and Stark, 1997; Kirk and Kronzucker, 2005).

Taken together, the above considerations strongly indicate that
the concept of N-source preference cannot be easily defined, but
depends on a wide and dynamic range of environmental and
physiological factors that overlap simultaneously. Strictlyspeak-
ing, any assignment of a rigid preference index is valid only for
the composite of conditions under which it was experimentally
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determined. Moreover, it may be valid only for a given plant
variety or subspecies (e.g. Zornoza et al., 1996) or developmen-
tal stage (Haynes and Goh, 1978; Jing et al., 2012).

MODELLING THE INFLUENCE OF N-SOURCE
PREFERENCE ON ECOLOGICAL PROCESSES

Despite the complex physiological nature of b values, plants
have certainly evolved nutritional adaptations to NO3

2 or NH4
+,

and thus can often be found on soils enriched in the particular
N source to which they are most adapted for a given condition.
Indeed, some plants appear to be so well adapted to a specific
N source that they appear to prefer it under a wide range of con-
ditions. For example, in one study seedlings of Picea glauca and
Pinus radiata showed greater growth and N uptake with NH4

+

than with NO3
2, regardless of pH, temperature or type of

growth medium (McFee and Stone, 1968). The slow growth of
these late-successional conifers on NO3

2 may be particularly
limited due to highly atrophied transport systems for the ion, as
has been demonstrated in P. glauca (Kronzucker et al., 1997),
while their superior growth on NH4

+ reflects the high NH4
+

content and low nitrification potential of boreal forest soils and
other climax systems (Rice and Pancholy, 1972; Haynes and
Goh, 1978). Other studies have indicated at times extraordinary
plant preferences for one inorganic N source over another, at
various developmental stages and under differing nutritional
conditions (Rygiewicz and Bledsoe, 1986; Knoepp et al.,
1993; van den Driessche and Ponsford, 1995; Gessler et al.,
1998).

In such species and under such conditions, where N-source
preferences appear to be pronounced, soil nitrogen speciation
(and changes in it) has been shown to be a significant determinant
of plant productivity, competition, coexistence and ecological
succession (McFee and Stone, 1968; Rice and Pancholy, 1972;
Haynes and Goh, 1978; Lodhi, 1979; Lodhi and Killingbeck,
1980; Robertson and Vitousek, 1981; Kronzucker et al., 1997,
2003; Kirk and Kronzucker, 2005; Kahmen et al., 2008). Such
work extends to interactions among plant species and soil

microorganisms in terms of their competition, cooperation and
N-source preferences, which can change depending on the pres-
ence or absence of mycorrhizal associations (Plassard et al.,
1991; Stewart et al., 1993; Clemmensen et al., 2008; Warren,
2009; Paulding et al., 2010; Piao et al., 2012; Wu et al., 2013).

Nevertheless, many other plants have eluded simple classifi-
cation as preferring NO3

2 or NH4
+. For example, some apparent

NO3
2 specialists can thrive on NH4

+ when K+ provision is suffi-
ciently high (Britto and Kronzucker, 2002). Most strikingly in
this regard, a quintessentially ‘NH4

+-preferring’ plant such as
rice (Oryza sativa) can show significant variations in its apparent
b, depending on factors such as soil depth and nutritional com-
position, and can be very effective in NO3

2 utilization
(Kronzucker et al., 2000; Kirk and Kronzucker, 2005; Balkos
et al., 2010). Another such example is that of Vaccinium
species, which are often considered to be NH4

+ specialists
(Claussen and Lenz, 1999; Britto and Kronzucker, 2002), but
in some studies the co-presence of NO3

2 and NH4
+ appears to

be preferable (Ingestad, 1973). Thus, the development of a
general model to predict the effect of b on ecological outcomes
(e.g. of competition) should assume the multifactorial nature of
N-source preference or, more precisely, a set of preferences
rather than a fixed singularity.

The sheer complexity of possible plant responses to inorganic
N source is a major reason why no comprehensive models yet
exist to map and predict the effects of b on ecological processes.
Recently, an attempt was made to model species replacement dy-
namics and ecosystem-level plant productivity, using a measure
of N-source preference (Boudsocq et al., 2012). Unfortunately, a
very simple designation of b was used in the process; it was
defined as a linear coefficient for NH4

+ uptake, ranging from 0
to 1, while (1 2 b) was assigned to be the corresponding coeffi-
cient for NO3

2 uptake. A fixed N-source preference was thereby
assumed for a given plant species, as was a linear proportionality
between uptake and substrate concentrations. As discussed here,
however, a fixed b value does not take into account the genetic
and physiological plasticities of plant responses to NO3

2 or
NH4

+ within the matrix of changing environmental conditions

PHYSIOLOGICAL ATTRIBUTES

Growth rates Soil nutrient stocks

Soil heterogeneity
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Pools vs. turnover
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FI G. 3. Physiological and environmental factors influencing N-source preferences (b values) in plants.
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(e.g. Fig. 2). In addition, this definition neither considers
Monod-like (or Michaelis–Menten-like) growth and uptake pat-
terns nor allows for luxury or toxic consumption (Fig. 1).

For purposes of ecosystem management and study, it is worth-
while to develop general models that describe and predict effects
of N source on plant populations and their competitive interac-
tions. What must be kept in mind is that pronounced differences
exist in plant responses to NO3

2 or NH4
+, but how these translate

into ‘preferences’ depends on many complex, and interacting,
factors. Indeed, a simple assessment ofb is not generally feasible
or applicable to realistic models, despite recent effort to do so
(Boudsocq et al., 2012). The numerous factors, physiological
and environmental, that coalesce to influence N-source preference
are outlined in Fig. 3; each has its own set of complexities and
interactions with other factors. In some cases, such as that of
many boreal conifers, a strong specialization emerges despite
myriad complexities (but cf. Heiskanen, 2005), while in cases
like tropical lowland rice apparent preferences are not so clear-cut.
To conclude, a quotation from D. Tilman (1985) is instructive:
‘Clearly, the uniqueness of the species involved in successions
in different areas, the uniqueness of each particular habitat, and
various historical factors all limit the potential predictive ability
of any model of vegetation dynamics and structure’.
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