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Abstract
Aims Rice is known as an ammonium (NH4

+)-tolerant
species. Nevertheless, rice can suffer NH4

+ toxicity,
and excessive use of nitrogen (N) fertilizer has raised
NH4

+ in many paddy soils to levels that reduce vege-
tative biomass and yield. Examining whether thresh-
olds of NH4

+ toxicity in rice are related to nitrogen-use
efficiency (NUE) is the aim of this study.
Methods A high-NUE (Wuyunjing 23, W23) and a
low-NUE (Guidan 4, GD) rice cultivar were cultivated
hydroponically, and growth, root morphology, total N
and NH4

+ concentration, root oxygen consumption,

and transmembrane NH4
+ fluxes in the root meristem

and elongation zones were determined.
Results We show that W23 possesses greater capacity
to resist NH4

+ toxicity, while GD is more susceptible.
We furthermore show that tissue NH4

+ accumulation
and futile NH4

+ cycling across the root-cell plasma
membrane, previously linked to inhibited plant devel-
opment under elevated NH4

+, are more pronounced in
GD. NH4

+ efflux in the root elongation zone, mea-
sured by SIET, was nearly sevenfold greater in GD
than in W23, and this was coupled to strongly stimu-
lated root respiration. In both cultivars, root growth
was affected more severely by high NH4

+ than shoot
growth. High NH4

+ mainly inhibited the development
of total root length and root area, while the formation
of lateral roots was unaffected.
Conclusions It is concluded that the larger degree of
seedling growth inhibition in low- vs. high-NUE rice
genotypes is associated with significantly enhanced
NH4

+ cycling and tissue accumulation in the elonga-
tion zone of the root.

Keywords Rice . Nitrogen-use efficiency . NH4
+

toxicity . Free NH4
+ concentration . NH4

+ efflux . Root
respiration

Introduction

Ammonium (NH4
+), one of the two inorganic nitrogen

sources used by plants (NH4
+ and NO3

−), is beneficial
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for plant growth under many circumstances and, indeed,
serves as a ubiquitous intermediate in plant metabolism
(Glass et al. 1997). Its assimilation furthermore entails
lower energy costs compared to NO3

− (Mehrer and
Mohr 1989). Additionally, studies have shown NH4

+

can improve the capacity to tolerate water stress in rice
in comparison with NO3

− (Guo et al. 2007), and has
been shown to act as an inducer of resistance against
salinity conditions in other species (Fernandez-Crespo
et al. 2012). Nevertheless, NH4

+ frequently reaches
levels in soils that affect plant growth negatively.
These negative effects manifest in stunted root growth,
yield depression, and chlorosis of leaves (Britto and
Kronzucker 2002; Balkos et al. 2010; Li et al. 2011b).
However, higher plants display widely differing
responses to NH4

+ nutrition (Marschner 1995) and,
accordingly, can be divided into tolerant and sensitive
species (Britto and Kronzucker 2002). Based on a series
of comparative studies, more than 18 kinds of plants or
plant species, including eight kinds of wild plants, have
been classified as highly adapted to NH4

+ as a nitrogen
source (Britto and Kronzucker 2002; Rios-Gonzalez et
al. 2002; Cruz et al. 2006; Dominguez-Valdivia et al.
2008; Omari et al. 2010). Further, more than 22 kinds of
plants or plant species, eight of which wild, have been
classified as sensitive to the NH4

+ source (Britto and
Kronzucker 2002; Cruz et al. 2006; Roosta et al. 2009).
Rice is regarded as unique in its high degree of NH4

+

tolerance (Wang et al. 1993a, b). Studies have suggested
that NH4

+-tolerant plants generally possess higher glu-
tamine synthetase (GS) activity and less accumulation
of free NH4

+ in plant tissues (Magalhaes and Huber
1991; Balkos et al. 2010). In addition, several important
hypotheses have been proposed, such as carbon deple-
tion in roots induced by NH4

+ assimilation (Finnemann
and Schjoerring 1999), NH4

+-induced pH reduction in
the root zone (Chaillou et al. 1991), deficiencies of
mineral cations (Siddiqi et al. 2002), impairments in
the N-glycosylation of proteins (Barth et al. 2010) and
futile and energy-costly NH4

+ cycling at the plasma
membrane of both root and shoot cells (Britto et al.
2001; Kronzucker et al. 2001; Britto and Kronzucker
2002; Szczerba et al. 2008a; Li et al. 2010). However, to
date, no single mechanism has been able to fully eluci-
date NH4

+ toxicity (Britto and Kronzucker 2002; Roosta
and Schjoerring 2008). On the basis of the fact that all of
the hypothesized mechanisms with regard to NH4

+ tox-
icity are linked to the permeation of NH4

+ (or perhaps
NH3) into the cell, useful clues can be obtained by

studying transmembrane NH4
+ fluxes. Britto et al.

(2001) studied NH4
+ fluxes across the root plasma

membranes of barley and rice by using a high-
precision positron tracing technique and found, at ele-
vated levels of NH4

+, a significantly larger NH4
+ efflux,

accounting for up to 80 % of primary influx, in barely
cells, which carried a high energetic cost and was inde-
pendent of N metabolism. Britto et al. (2001) further-
more suggested that rice, unlike barley, was resistant to
the respiratory drain induced by futile NH4

+ cycling.
Despite its reputation as an NH4

+-tolerant species,
rice can be affected negatively by elevated NH4

+, par-
ticularly at low K+ (Balkos et al. 2010), which, in turn,
may be relieved by elevated K+, similar to conclusions
reached in Arabidopsis (Li et al. 2010; Zou et al. 2012).
Several studies have shown declines in K+-bearing clay
minerals over extended cultivation periods in many rice-
growing areas of China (Li et al. 2003). In fact, K+

deficiency has been observed in about 70 % of rice
paddies in southeastern China (Yang et al. 2005).
Similar declines have been noted in other parts of Asia
(Cassman et al. 1997). On the other hand, in recent
years, excessive use of N fertilizers, irrational fertiliza-
tion patterns, and deposition of atmospheric NH3/NH4

+

(Pearson and Stewart 1993; Li et al. 2011a) have
resulted in the accumulation of excess NH4

+ in many
agricultural soils, and, consequently, soil-solution NH4

+

concentrations have been reported in ranges of 2–
20 mM, and some as high as 40 mM (Glass et al.
2002; Kronzucker et al. 2003).

China has the second-largest area of rice cultivation
and the highest rice production in the world, accounting
for 19 % of the world’s rice area and contributing 29 %
of the world’s rice production (FAO 2010), and rice is
mainly cultivated in irrigated paddy fields, where anaer-
obic conditions prevail and inorganic nitrogen is main-
tained as NH4

+ (Freney et al. 1985). In recent years, an
N-fertilization rate averaging 300–350 kgNha−1 has
been applied in many regions of China in a single rice
season, with the goal of obtaining maximal grain yields
(Wang et al. 2004). However, the high N-application rate
has in fact decreased grain yields (Zhang et al. 2009; Sun
et al. 2012; Qiao et al. 2012), and led to a drastic decline
in N-utilization efficiency, with the additional conse-
quence of increased N loss to the environment, polluting
both the atmosphere and water systems (Zhu et al. 1997;
Kondo et al. 2003). NUE, in an agronomic sense, can
be defined as the ratio of grain yield to N supplied,
namely, NUE = Gw/Ns, where Gw represents plant
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grain yield and Ns represents plant-available N in the
soil including soil-native N and N applied as fertiliz-
er, and is composed of N-uptake efficiency and
physiological N-use efficiency (De Macale and Velk
2004). Thus, high-NUE cultivars are designated as
such when they display higher grain yield under
identical nitrogen supply. With improvements in rice
breeding technology, new rice cultivars have been
produced that exhibit higher grain yield under identi-
cal N-application levels and possess stronger capacity
for resistance to high application of N fertilizer in
comparison with older cultivars which are usually
referred to as relatively low-NUE cultivars. It is
speculated that low-NUE rice cultivars suffer from
more severe damage in development caused by high
amount application of N fertilizer, primarily by ex-
cessive NH4

+, compared with high-NUE cultivars.
Here, we examine rice cultivars differing in NUE,

with the emphasis on performance on high NH4
+ reflec-

tive of excessive applications of N. We specifically
explore the relationship between root NH4

+ fluxes, N
content, tissue NH4

+ accumulation, root morphology,
and the capacity for tolerance to high NH4

+. We hope
our experiments will lay a foundation for research into
the relationship of NUE and NH4

+ tolerance.

Materials and methods

Plant material and treatments

Two rice (Oryza sativa L.) cultivars, Wuyunjing 23
(W23) and Guidan 4 (GD), were chosen as experi-
mental materials. Our field experiment showed when
200 kgNha−1 were applied, the grain yields of W23
and GD were 8.93 tha−1 and 5.09 tha−1, respectively.
Furthermore, when 270 kgNha−1 were applied, W23
reached 9.28 tha−1, compared to 4.27 tha−1 in GD.
Based on these results, W23 was defined as a high-
NUE cultivar, and GD as a low-NUE cultivar.

After germination on moist filter paper, rice seeds
were transferred to a 2.0 mmolL−1 CaSO4 solution for
germination. After 3 days, seedlings were transferred to a
1/4-strength mixture of NO3

− or NH4
+-containing nutri-

ent solution, according to IRRI rice nutrient solution
(Yoshida et al. 1972; for composition, see below).
Three days after, seedlings were transferred to a half-
strength mixture of NO3

− or NH4
+-containing nutrient

solution. Four days later, seedlings were supplied with

full-strength mixture of NO3
− or NH4

+-containing nutri-
ent solution for 1 week, and then seedlings were supplied
with either “normal”N (2.86 molm−3 NH4

+-N, provided
as (NH4)2SO4), namely CK treatment, or “high” N
(15 molm−3 NH4

+-N, provided as (NH4)2SO4). In addi-
tion, varying NH4

+-N concentrations (10, 20, 30 mol
m−3) were also supplied to examine the relationship
between NH4

+ fluxes and NH4
+ tolerance of the two rice

cultivars. All treatments had eight replicates, with com-
pletely randomized design. The placement of different
treatments was randomized to avoid edge effects in the
growth chamber.

Rice plants were cultivated in a growth chamber at
25 °C with 70 % relative humidity and a 14-h light and
10-h dark cycle. The light intensity was set at
500 μmol photon m−2s−1 at plant height. Except for
N, composition of the nutrient solution was as follows:
macronutrients (molm−3): 1.02 K as K2SO4 and
KH2PO4; 0.32 P as KH2PO4, 1.65 Mg as MgSO4,
micronutrients (mmolm−3): 35.8 Fe as Fe-EDTA;
9.10 Mn as MnSO4; 0.15 Zn as ZnSO4; 0.16 Cu as
CuSO4; 18.5 B as H3BO3; 0.52 Mo as (NH4)6Mo7O24;
0.1 Si as Na2SiO4. In NH4

+-containing nutrient solu-
tion, Ca2+ was supplied as CaCl2 (1.43 molm−3), the
pH of the nutrient solution was maintained at 5.50±
0.05 by adding 0.1 molm−3 HCl or 0.1 molm−3 NaOH
daily, and the nitrification inhibitor DCD was added to
each pot to prevent NH4

+ oxidation. Nutrient solutions
were exchanged every 2 days.

Biomass, total N accumulation and root morphology

15 days after treatments at normal and high N, rice
plants were harvested and divided into above-ground
parts and roots. All samples were kept in a drying oven
at 105 °C for 30 min, and then at 70 °C until constant
weight was achieved, at which point dry weight was
recorded. Plant samples were digested with H2SO4-
H2O2, and the concentration of N was determined using
the Kjeldahl method. Root morphology including total
root length, root volume, root surface area, average root
diameter, and root tip number were analyzed using the
root analysis instrument WinRhizo-LA1600 (Regent
Instruments Inc., Quebec, Canada).

Tissue ammonium determination

Rice seedlings were harvested and desorbed in 10 mol
m−3 CaSO4 for 5 min, so as to remove extracellular
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NH4
+. Roots and shoots were weighed separately and

then transferred to polyethylene plastic vials with liquid
N2 for storage at −80 °C. Approximately 0.5 g of root or
shoot tissue was homogenized under liquid N2 using a
mortar and pestle, followed by addition of 6 ml formic
acid (10 molm−3) to extract NH4

+. Subsamples of the
homogenate were centrifuged at 2 °C for 10 min at
25,000 g, and filtered with 0.45 μm nylon filter
(Costar, Corning Inc., Lowell, MA, USA) and centri-
fuged at 5,000 g (2 °C) for 5 min. Ammonium was
analyzed by the o-phthalaldehyde (OPA) method using
a high-performance liquid chromatography (HPLC)
system (Waters Corp., Milford, MA, USA, equipped
with a Phenomenex Gemini C18 analytical column
4.6 mm×150 mm; particle size 5 μm). The analytical
principle was based on detection of fluorescence upon
reaction between the fluorochrome OPA and NH4

+ as
described by Husted et al. (2000).

Measurement of net NH4
+ fluxes with the SIET system

Net fluxes of NH4
+ were measured non-invasively using

SIET (scanning ion-selective electrode technique, SIET
system BIO-003A; Younger USA Science and
Technology Corp.; Applicable Electronics Inc.; Science
Wares Inc., Falmouth, MA, USA). The principle of this
method and the instrument are detailed in Sun et al.
(2009). Measurements were performed at room temper-
ature (24–26 °C). After growth of rice seedlings in
normal-N (2.86 molm−3 NH4

+-N) and high-N (15 mol
m−3 NH4

+-N) nutrient solution for 15 days, the roots of
seedlings were equilibrated in measuring solution for
20–30 min. The equilibrated seedlings were then trans-
ferred to the measuring chamber, a small plastic dish (3-
cm diameter) containing 2–3 mL of fresh measuring
solution, and fixed for measurement. The microelec-
trode was vibrated in the measuring solution between
two positions, 5 μm and 35 μm from the root
surface, along an axis perpendicular to the root. The
background was recorded by vibrating the electrode
in measuring solution not containing roots. The glass
microelectrodes with 2–4 μm aperture were made
and silanized by Xuyue Science and Technology
Co., Ltd. 0.1 molm−3 NH4

+ as (NH4)2SO4 was added
as back-filling solution, followed by 20 μM of com-
mercially available ionophore cocktail for measuring
NH4

+ (NH4
+ selective liquid ion-exchange cocktail

#09879, Fluka Chemicals, Buchs, Switzerland) in
front of the microelectrode. Prior to the flux

measurements, the ion-selective electrodes were cali-
brated using NH4

+ concentrations of 0.05 and
0.5 molm−3. The net fluxes of NH4

+ at the meristem
and elongation zone were measured individually.
Each plant was measured once. The final flux values
at each zone were the means of more than eight
individual plants from each treatment. The measuring
solution was composed of 1.02 molm−3K as K2SO4

and KH2PO4; 0.32 molm−3 P as KH2PO4, 1.65 mol
m−3Mg as MgSO4, 1.43 molm−3 Ca as CaCl2 and
0.5 g/L MES (pH5.5 adjusted with 1 M NaOH). All
measurements of net NH4

+ fluxes were carried out at
Xuyue Science and Technology Co., Ltd (Beijing,
China).

Root respiration

Excised roots of rice seedlings following 15-day
treatment at normal and high N were used for root
respiration measurements, using a Hansatech oxy-
gen electrode and an Oxygraph control system
(Hansatech Instruments, Norfolk, UK). Roots were
cut into sections approximately 3 mm long while
immersed in solution and using a razor blade, and
were aged for a minimum of 3 h in aerated growth
solution. About 0.3 g of root material was placed into
3 mL of growth solution, and the cuvette was sealed.
The decline in O2 concentration was monitored for
15 min, with the initial, linear decline used to calculated
O2 depletion rates (Balkos et al. 2010).

Statistical analysis

All data were statistically analyzed by means of the
statistical software package SAS with LSD to identify
differences. Significant differences (P<5 %) between
treatments are indicated by different letters.

Results

Total biomass accumulation and ratio of root to shoot

High NH4
+ significantly inhibited total biomass ac-

cumulation in GD compared to growth on normal
N level, by 27.3 %, while there was no statistically
significant difference in W23 (Fig. 1a). Elevated
NH4

+ markedly suppressed the root:shoot ratio in
both GD and W23, which indicated rice roots were
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more affected by elevated NH4
+ than shoots. The

suppression of the ratio was more substantial
(29.5 %) in GD than in W23 (<10.8 %)
(Fig. 1b). Figure 1c, d further show that high
NH4

+ suppressed root growth more than shoot
growth, with decreases of 45.5 % and 18.6 %
measured in roots of GD and W23, respectively,
and only 22.8 % and 8.6 % in shoots.

Root morphology

As shown in Table 1, under high NH4
+, total root

length and root surface area in GD were inhibited
compared with growth on normal N. By contrast, no
significant differences were observed in W23. In ad-
dition, high NH4

+ had little effect on root volume,
average root diameter, or root tip number, showing

that high NH4
+ does not affect the formation of lateral

roots in rice.

Total N accumulation and N concentration

N accumulation paralleled biomass accumulation in
both cultivars, with smaller N accumulation ob-
served in both root and shoot of GD in the high
NH4

+ treatment compared to normal N treatments.
Moreover, a larger extent of suppression in N
accumulation was observed in roots than shoots
in GD, by 41.1 % and 28.8 %, respectively.
However, no obvious N-accumulation differences
were found in either organ of W23 (Fig. 2a, b).
In addition, no differences in N content were
found, when expressed as a percentage, in either
roots or shoots of W23 and GD (Fig. 2c, d).

Fig. 1 Percentage inhibition of total biomass (a), root-to-shoot ratio
(b), shoot (c) and root (d) biomass in Wuyunjing 23 (W23) and
Guidan 4 (GD) supplied with normal N (CK) and high N (15 mol
m−3 NH4

+) levels. In (a), (b), (c), and (d), growth on CK was
considered as 100 %. In (a), 100 % corresponds to 0.51±0.10 g
plant−1 for W23 and 1.55±0.17 g plant−1 for GD. In (b), 100 %

corresponds to 0.26±0.02 for W23 and 0.25±0.01 for GD. In (c),
100 % corresponds to 0.40±0.08 g plant−1 for W23 and 1.25±0.13 g
plant−1 for GD. In (d), 100 % corresponds to 0.11±0.02 g plant−1 for
W23 and 0.31±0.04 g plant−1 for GD. Bars show standard deviations
and different letters indicate significant differences between normal N
and high N levels in each rice cultivar (P<0.05)
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Tissue NH4
+ concentration

When supplied with high NH4
+, markedly higher

NH4
+ concentrations were observed in both shoot

and root of W23 and GD in comparison with
normal-N treatments. Similarly increased percentages

were observed in shoots of both W23 and GD, 40 %
and 41 %, respectively (Fig. 3a). However, dramati-
cally larger NH4

+ concentrations were detected in
roots of GD when supplied with high NH4

+ in com-
parison with those of W23: 255 % for GD, and only
83 % for W23 (Fig. 3b).

Table 1 Root morphology of W23 and GD supplied with normal N (CK) and high N (15 molm−3 NH4
+)

Rice cultivar N (NH4
+) level Total length (cm) Volume (cm3) Surface area (cm2) Average diameter (cm) Tip number

W23 CK 229±35.8 a 2.37±0.08 a 82.5±7.62 a 1.16±0.07 a 170±14.6 a

15 molm−3 220±19.2 a 2.59±0.31 a 84.3±3.63 a 1.23±0.12 a 172±49.9 a

GD CK 362±44.8 a 2.75±0.26 a 112±8.73 a 0.98±0.06 a 185±30.6 a

15 molm−3 282±13.9 b 2.68±0.31 a 94.0±3.92 b 1.08±0.07 a 189±15.0 a

Data are means ± SD of three replicates; different letters indicate significant differences between normal N and high N levels in each
rice cultivar (P<0.05)

Fig. 2 Percentage inhibition of shoot-N (a) and root N accu-
mulation (b), as affected by high NH4

+, shoot N concentration
(c) and root N concentration (d) of W23 and GD supplied with
normal N (CK) and high N (15 molm−3 NH4

+) levels. In (a), (b),
N accumulation on CK was considered as 100 %. In (a), 100 %
corresponds to 13.0±2.27 mg plant−1 for W23 and 40.5±

3.64 mg plant−1 for GD. In (b), 100 % corresponds to 2.57±
0.52 mg plant−1 for W23 and 9.38±1.54 mg plant−1 for GD.
Bars show standard deviations and different letters indicate
significant differences between normal N and high N levels in
each rice cultivar (P<0.05)
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Net NH4
+ fluxes at the meristem and elongation zones

of rice roots

Net NH4
+ fluxes at the surfaces of meristem and

elongation zones of W23 and GD, assayed by
SIET, showed NH4

+ influx primarily in the meri-
stem zones in both W23 and GD when supplied
with normal N and high NH4

+, whereas high NH4
+

stimulated NH4
+ efflux in the elongation zones of

both cultivars (Fig. 4a, b, c, d). Greater NH4
+

influx was observed in the meristem zone of
W23 compared with GD, and high NH4

+ did not
change the NH4

+ flux direction in the meristematic
zones in either rice cultivar (Fig. 4a, b, e). NH4

+

efflux was detected in the elongation zones of both
W23 and GD when supplied with high NH4

+, but
there was a significantly larger NH4

+ efflux in GD,
some 670 % higher than W23 (Fig. 4c, d, f).

Root respiration

High NH4
+ stimulated O2 consumption in roots to

differing extents in W23 and GD when compared with
normal-N treatments. No significant differences were
observed in W23. However, in GD, high NH4

+ mark-
edly increased root O2 consumption (Fig. 5).

The relationship between net NH4
+ fluxes and NH4

+

tolerance of the two rice cultivars

As shown in Fig. 6a, total biomass accumulation was
decreased with increasing NH4

+ concentration from CK
(2.86 molm−3 NH4

+) to 30 molm−3 NH4
+. However,

larger degrees of growth suppression were detected in
GD with increasing NH4

+ concentration in comparison
with W23. Meanwhile, a larger degree of gradually
increased NH4

+ effluxes in the elongation zone was
observed in GD with increasing NH4

+ concentration.
In addition, NH4

+ effluxes in the meristematic zone
were also detected in GD when NH4

+ concentrations
were raised to 20 and 30 molm−3 (Fig. 6b, c). This
indicates that NH4

+ efflux at the root surface is linked
to the capacity for NH4

+ tolerance in rice.

Discussion

Inhibited development of rice plants and root
morphology under high NH4

+ in relation to NUE

Excessive NH4
+ is known to inhibit the growth of

most crop species (Roosta and Schjoerring 2008). In
particular, stunted root growth is a principal symptom
of the ion’s toxicity (Gerendas et al. 1997; Britto and
Kronzucker 2002; Balkos et al. 2010; Roosta and
Schjoerring 2008). In our study, a larger degree of
inhibition of rice development, in particular in roots,
was observed in the lower-NUE cultivar GD com-
pared with the higher-NUE W23 (Fig. 1a, b, c, d),
indicating that lower NUE in the two cultivars exam-
ined is associated with a lower threshold for NH4

+

toxicity. More severe inhibition of rice root than shoot
growth was observed in both W23 and GD (Fig. 1c,
d), producing reduced root:shoot ratios in both culti-
vars when NH4

+ was elevated (Fig. 1b). This agrees
with observations of others, who related the effect to a
competition for carbon skeletons between root growth

Fig. 3 Shoot NH4
+ concentration (a) and root NH4

+ concentra-
tion (b) of W23 and GD supplied with normal N (CK) and high
N (15 molm−3 NH4

+) levels. Bars show standard deviations and

different letters indicate significant differences between normal
N and high N levels in each rice cultivar (P<0.05)
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and NH4
+ assimilation in NH4

+-fed plants (Roosta and
Schjoerring 2008). While carbohydrates were not de-
termined in the present study, we measured enhanced
NH4

+ efflux (Fig. 4c, d, f) and respiratory oxygen
consumption in roots (Fig. 5), which may have

contributed to the reduced root:shoot ratio (see later
discussion). Root architecture plays an essential role in
the efficiency of nutrient and water acquisition from
the soil (Lynch 1995), and, therefore, root morpholo-
gies of GD and W23 were further analyzed to assess

Fig. 4 Net plasma-membrane NH4
+ fluxes in W23 and GD

supplied with normal N (CK) and high N (15 molm−3 NH4
+)

levels in the meristematic zones (a), (b), and the elongation
zones (c) (d), and mean values of NH4

+ fluxes from (a), (b)

and (c), (d), respectively. Each point represents the mean ± SD
of eight individual plants, and different letters indicate signifi-
cant differences between normal N and high N levels in each
rice cultivar (P<0.05)
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root changes induced by elevated NH4
+ and found that

both total root length and root surface area were more
severely inhibited in GD than in W23 (Table 1). As
reported by Li et al. (2010) in Arabidopsis, the distance
from the root apex to the first root hair was reduced
markedly under high NH4

+, the latter study further dem-
onstrated that cell elongation rather than cell division
was affected when the root tip was in direct contact with
NH4

+, indicating that root tip may function as a sensor in
the perception of NH4

+ stress. Based on these findings,
the suppressed total root length in GD is attributed to
inhibited cell elongation in the root elongation zone
where, as in the previous study (Li et al. 2010), markedly
larger NH4

+ efflux was also detected (Table 1 and
Fig. 4d, f). In addition, the number of the root tip itself
was not affected by high NH4

+ (Table 1), indicating that
the “sensor system” for perceiving NH4

+ stress remains
intact under NH4

+ stress in rice. Also interesting was that
the formation of lateral roots was not obviously affected
by high NH4

+, another conclusion that agrees with the
earlier study by Li et al. (2010), who found high NH4

+

did not inhibit the formation of lateral roots in
Arabidopsis, a relatively NH4

+-sensitive species.
Fundamentally, therefore, there appears to be little dif-
ference in the manner in which NH4

+ affects the root
architecture in NH4

+-tolerant and NH4
+-sensitive spe-

cies, and species as well as cultivar differences are more
a matter of threshold and degree than fundamental mech-
anistic difference.

In our study, high NH4
+ also suppressed N accumula-

tion in rice, reflecting the trend in biomass (Fig. 2a, b). As
per DeMacale and Velk (2004), pertinent to the seedling
(vegetative) stage, physiological N-use efficiency is

defined as biomass accumulation relative to N accumu-
lation (Shi et al. 2010). In our work, a significantly
larger decrease in N accumulation was observed in GD
when supplied with high NH4

+ relative to W23, which
indicated a significantly more reduced N-uptake effi-
ciency in the low-NUE GD when supplied with high
NH4

+ in the seedling stage (Fig. 2a, b). However, high
NH4

+ had little effect on physiological N-use efficiency
in both W23 and GD, as no significant differences in N
content (the ratio of N accumulation to biomass) were
found (Fig. 2c, d). Therefore, N-uptake efficiency, rather
than physiological N-use efficiency, declined in GD
under high NH4

+ condition compared to W23 in the
seeding stage.

Relationship between free NH4
+ content in roots

and NUE under high NH4
+

Ammonium influx by rice roots has been shown to
exhibit a biphasic dependence on external NH4

+ con-
centration (Wang et al. 1993a, b). At low NH4

+ con-
centrations, NH4

+ influx is mediated by a saturable
HATS (high-affinity transport system), and at higher,
including toxic, concentrations of NH4

+, it is mediated
by a LATS (low-affinity transport system) (Wang et al.
1993b; Kronzucker et al. 2000; von Wiren et al. 2000;
Britto and Kronzucker 2006). Moreover, the activity
of LATS is apparently not downregulated, indeed
might even be upregulated, and could cause higher
fluxes with increased nitrogen status of the plant
(Wang et al. 1993b; Rawat et al. 1999; Cerezo et al.
2001), and consequent NH4

+ hyperaccumulation in
tissues, considered a hallmark symptom of NH4

+

Fig. 5 Root O2 consumption
of W23 and GD supplied
with normal N (CK) and high
N (15 molm−3 NH4

+) levels.
Bars show standard devia-
tions and different letters in-
dicate significant differences
between normal N and high
N levels in each rice cultivar
(P<0.05)
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Fig. 6 Percentage inhibi-
tion of total biomass accu-
mulation (a) as affected by a
series of high NH4

+ concen-
trations, and net plasma-
membrane NH4

+ fluxes in
W23 and GD in the meri-
stematic zone (b) and elon-
gation zone (c) of roots,
supplied with increasing
NH4

+ concentration (2.86
(CK), 10, 20, 30 molm−3

NH4
+-N). In (a), growth on

CK was considered as
100 %. In (a), 100 % corre-
sponds to 0.57±0.05 g
plant−1 for W23 and 1.55±
0.28 g plant−1 for GD. Bars
show standard deviations

Plant Soil



toxicity (Britto et al. 2001; Szczerba et al. 2008b;
Balkos et al. 2010; Li et al. 2012). In our study, high
NH4

+ stimulated free NH4
+ accumulation in both

shoot and root of W23 and GD (Fig. 3a, b).
However, a dramatically larger free NH4

+ content
was detected in the root tissue of GD under high
NH4

+ compared with W23, an increase, compared to
normal-N control, of 83 % in W23, and of 255 % in
GD (Fig. 3b). Britto et al. (2001) suggested rice could
maintain lower symplastic concentrations of NH4

+

than barley (known to be susceptible to NH4
+ toxicity)

under elevated NH4
+, in part because it is capable of

shifting the trans-plasmamembrane electrical potential
(Δψ) to more positive values with increasing NH4

+, a
response not seen in barely, which, like Arabidopsis
(Hirsch et al. 1998), fails to down-regulate Δψ, which
has the important biophysical consequence of lower-
ing NH4

+ influx through root cation channels and the
ceiling for NH4

+ accumulation in the rice cytosol. In
addition, Wang et al. (1994) furthermore found the
decline of membrane polarization with increasing
NH4

+ in rice was not followed by a restoration of that
polarization in the steady state, possibly reflecting
rice’s relatively higher NH4

+ tolerance. Although this
was not measured here and will be the focus of a
future study, the relatively lower free root NH4

+ con-
tent detected in W23 compared with GD (Fig. 3b) may
well be related to a stronger capacity of adjusting Δψ
across the plasma membrane in W23.

Relationship between NH4
+ efflux in the elongation

zone and root respiration

In the toxic range of NH4
+ supply, NH4

+ acquisition is
mediated by a high-capacity, energetically passive, low-
affinity transport system (LATS), and low-affinity NH4

+

influx is accompanied by a nearly equal magnitude of
NH4

+ efflux, constituting a futile cycle of NH4
+ ion

across the plasma membrane (Britto and Kronzucker
2001, 2002, 2006). The substantial efflux of NH4

+ under
high NH4

+ conditions has been demonstrated to be
associated with high respiratory activity, in particular
in NH4

+-sensitive species (Britto et al. 2001; Britto
and Kronzucker 2001; Kronzucker et al. 2001; Britto
and Kronzucker 2006). In our study, a significantly
larger NH4

+ efflux was observed in the elongation zone
in GD under high NH4

+ supply compared with W23
(Fig. 4c, d, f). Furthermore, markedly stronger O2 con-
sumption was detected in GD than in W23 (Fig. 5), and

this was in turn associated with suppressed
growth, supporting the predictions from earlier
models. Li et al. (2010) also observed significant
NH4

+ efflux in the elongation zone of Arabidopsis,
which was coincident with the inhibition of root
elongation. It is clear that significantly different
thresholds exist within rice in response to NH4

+

in terms of NH4
+ entry, the degree of futile cy-

cling, the increase in root respiration, and the
suppression of growth, and these thresholds relate
to NUE. Whether NUE and NH4

+ toxicity relate to
each other in this manner more generally will be
examined in the future using large accessions of
rice germplasms.

Conclusion

It is concluded that two rice cultivars with different
NUE experience differential tolerance to high NH4

+ in
the seedling stage. In our study, growth development
of relatively low-NUE GD was suppressed by high
NH4

+ to a larger extent than the higher-NUE W23 in
the seedling stage, especially so for root growth. Total
root length and root area were particularly affected.
Furthermore, dramatically higher free NH4

+ was
detected in roots of GD than W23, which was related
to relatively poor regulation of NH4

+ influx at the
plasma membrane under high NH4

+. Larger NH4
+

efflux in the elongation zone of the root was observed
in GD under high NH4

+. This was accompanied by
significantly higher root respiration in comparison
with W23. In conclusion, the relatively high-NUE
W23 showed superior tolerance to high NH4

+ com-
pared with the relatively low-NUE GD in the seedling
stage, and this was at least partially related to en-
hanced respiration and futile transmembrane cycling
of the NH4

+ ion in the sensitive genotype.
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