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Abstract
Background Sodium (Na+) is one of the most intensely
researched ions in plant biology and has attained a repu-
tation for its toxic qualities. Following the principle of
Theophrastus Bombastus von Hohenheim (Paracelsus),
Na+ is, however, beneficial to many species at lower
levels of supply, and in some, such as certain C4 species,
indeed essential.
Scope Here, we review the ion’s divergent roles as a
nutrient and toxicant, focusing on growth responses,
membrane transport, stomatal function, and paradigms
of ion accumulation and sequestration.We examine con-
nections between the nutritional and toxic roles through-
out, and place special emphasis on the relationship of
Na+ to plant potassium (K+) relations and homeostasis.
Conclusions Our review investigates intriguing con-
nections and disconnections between Na+ nutrition and
toxicity, and concludes that several leading paradigms in
the field, such as on the roles of Na+ influx and tissue

accumulation or the cytosolic K+/Na+ ratio in the devel-
opment of toxicity, are currently insufficiently substan-
tiated and require a new, critical approach.

Keywords Salinity . Sodium . Plant nutrition . Sodium
toxicity . Ion transport . Potassium

Introduction

Sodium is the sixth most abundant element in earth’s
crust, where it comprises some 2.8 % (Lutgens and
Tarbuck 2003), and, after chloride, is the second most
abundant solute in the oceans. In the latter, it typically
prevails at concentrations near 470 mM (Harris 1996;
Epstein and Bloom 2005), and these can be higher still
in areas of high evaporation and limited rainfall, such
as regions near 30° latitude. It is instructive to ponder
the evolution of early life in this salt-dominated envi-
ronment, and it, thus, comes as little surprise that
marine organisms, from protists to animals, are highly
salt-tolerant, and indeed require Na+ for survival. Even
in terrestrial animals, Na+ has retained its role as an
essential nutrient. In mammals, blood serum Na+ con-
centrations are held high, by virtue of strict homeo-
static mechanisms (see e.g. Grinstein and Rothstein
1986), near 135–145 mM, and even higher levels are
routinely achieved in the renal system and in urine
(Segen and Stauffer 1998). By contrast, the majority
of land plants, when exposed to concentrations similar
to those found in the mammalian blood stream, let
alone that of the oceans, suffers moderate to severe
toxicity symptoms. Such concentrations are, however,
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frequently found, and exceeded, in soils, and this occurs
rarely as a uniform distribution but is associated with
much spatial heterogeneity (Bazihizina et al. 2012).
Only a few groups of terrestrial plants, the halophytes,
have (re-)-acquired the ability to tolerate, and indeed
thrive on, high-Na+ media, while others, however,
appear to have the ability to utilize the Na+ ion for
several key cellular processes and can benefit from
sodium’s presence, as long as supply concentrations
remain below osmotically challenging ones. Here, we
will focus on the literature covering these beneficial
effects in higher plants, with a special emphasis on
the few mechanistic explanations that have emerged,
and, in addition, on salient open questions in the
otherwise more thoroughly researched area of sodium
toxicity, in particular as they relate to, or emanate
from, deliberations of the former. Special focus will
also be brought to interactions between sodium and
potassium, wherein much insight into mechanisms of
growth and performance enhancement as well as impair-
ment can be found.

Sodium as a nutrient

From beet to chocolate: the classic literature—Na+

benefits are common

It has long been known that Na+ can be of benefit to
the growth of algae and cyanobacteria (Allen and
Arnon 1955; Simonis and Urbach 1963; Brownell and
Nicholas 1968), but, for higher plants, the reputation of
the ion as a toxic one has held sway (Maathuis 2007;
Munns and Tester 2008; Kronzucker and Britto 2011;
Cheeseman 2013), and the vast majority of higher-plant
literature on the ion has focused on this aspect, even
though studies in a wide variety of species, including
such important cultivated ones as tomato, potato, carrot,
cacao, and cereals, have demonstrated the potential ben-
efit of the ion for higher-plant growth as well (Wheeler
and Adams 1905; Lehr 1941; Lehr and Wybenga 1955;
Woolley 1957; Williams 1960; Brownell 1965;
Brownell and Jackman 1966; Montasir et al. 1966;
El-Sheikh et al. 1967; Hylton et al. 1967; Draycott
and Durrant 1976; Galeev 1990; Takahashi and
Maejima 1998; Gattward et al. 2012). It is important
to emphasize that every substance has a threshold
below which it is not toxic, in accordance with the
“sola dosis facit venemum” (only the dose makes the

poison) principle, famously attributed to Theophrastus
Bombastus von Hohenheim (Paracelsus), but, for Na+,
beneficial effects are seen well into the range of concen-
trations that would be considered high for ordinary
nutrient ions, such as NO3

−, NH4
+, or K+, and, in

the cases of halophytes, go far beyond that (Flowers
and Colmer 2008). Many of the studies on beneficial
effects have focused on the partial to near-complete
replacement of potassium by sodium, typically in the
concentration range of several millimolar, reporting
either no negative, or indeed palpably positive, effects
on plant growth and yield. In many of the cases,
growth was particularly stimulated when K+ supply
was low, and plants suffered at least partial K+ dep-
rivation (Mullison and Mullison 1942; Wallace et al.
1948; Lehr 1950; Cope et al. 1953; Lancaster et al.
1953; Lehr 1953; Gammon 1953; Truog et al. 1953;
Ulrich and Ohki 1956; Flowers and Läuchli 1983;
Subbarao et al. 2001; Subbarao et al. 2003).

Tables 1, 2, and 3 summarize a substantial body of
studies that have reported such beneficial effects, listing
the species examined, the parameters reported, and
the Na+ concentrations at which effects were seen.
Aside from growth (improved root and shoot bio-
mass) and yield, results in early studies were often
reported as readily visible changes, such as improve-
ment in colour (i.e. greener leaves) and its mainte-
nance in later growth stages, and, related to this, less
pronounced manifestations of nutrient deficiency
(chlorosis or necrosis), or greater “gloss” on leaves,
suggesting an increase in cuticular wax formation
(Harmer and Benne 1945; Brownell and Crossland
1972). Other reports have commented on the taste
and texture of crops grown with additions of sodium
(Harmer and Benne 1945; Truog 1953; Zhang and
Blumwald 2001).

Among the species examined, the Chenopodiaceae,
including the important crops spinach, beet, and sugar
beet, have received particularly detailed attention, both
in terms of physiological and field investigation
(Larson and Pierre 1953; Lehr and Wybenga 1955;
Tinker 1965; El-Sheikh et al. 1967; Draycott et al.
1970; Judel and Kuhn 1975; Draycott and Durrant
1976; Jeschke 1977; Milford et al. 1977; Durrant et
al. 1978; Draycott and Bugg 1982; Flowers and
Läuchli 1983; Nunes et al. 1984; Pessarakli and
Tucker 1985; Peck et al. 1987; Magat and Goh 1990;
Haneklaus et al. 1998; Subbarao et al. 1999a, b).
Beneficial effects in this family are pronounced, and
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this may well relate to their ecological habit as ruderal,
r-strategic, species (Desplanque et al. 1999), capable
of substantial growth rates and physiological flexibility
in response to rapidly changing environments. The
ability to, opportunistically, utilize the Na+ ion when
available, as an osmoticum to aid with rapid expansion
growth (see later), may impart a significant competitive
advantage in such potentially fast-growing species.
Interestingly, many of the same species are also known
to “luxury-consume” the NO3

- ion when it is readily
available, and accumulate it to high levels in particular
in vacuoles, to the point that such levels are often
considered a health hazard for human consumption,
as, for instance, in spinach and beet (Phillips 1971;
Stanford et al. 1977). The Chenopodiaceae are fur-
thermore interesting in that they can benefit from Na+

even when K+ is present at significant concentrations
alongside it in the growth medium (Marschner 1995;
Subbarao et al. 2003), i.e. they do not require K+

depletion before effects are seen. In other words,
effects are not limited to those attributable to a
“replacement” of K+.

A further group for which much information is
available, since early work focusing especially on the
saltbush Atriplex, is that of species that engage in
the C4 habit of photosynthesis. The paradigm that C4

species benefit particularly substantially, and indeed
in many, albeit not all, cases require Na+ as an
essential nutrient, is now widely accepted (Harmer and
Benne 1945; Barbier and Chambannes 1951; Brownell
and Wood 1957; Brownell 1965; Alekseev and
Abdurakhamanov 1966; Brownell and Jackman 1966;
Brownell and Crossland 1972; Marschner 1995;
Pessarakli and Marcum 2000; Pessarakli 2001;
Subbarao et al. 2003). Important exceptions include
the leading C4 crops corn and sorghum, which have
been shown not to benefit from Na+ addition (Ohta et
al. 1988; Ohnishi et al. 1990; Subbarao et al. 2003). In
C4 species, it is thought that Na

+ facilitates the conver-
sion of pyruvate into phosphoenolpyruvate (PEP),
which occurs in mesophyll cells, prior to the Calvin
cycle (Johnston et al. 1988). Johnston et al. found that,
under conditions of Na+ deficiency in the C4 species
Amaranthus tricolor, the C3 metabolites alanine and

Table 1 Survey of published studies that report Na+ as a beneficial nutrient (micronutrient, ≤1 mM) for some plant species

Species [Na+]external Measure(s) improved by Na+ Reference

Barley (Hordeum vulgare), Atriplex nummularia,
A. paludosa, A. quinii, A. semibaccata, A. inflata,
A. leptocarpa, A. lindleyi, A. spongiosa,
A. semilunalaris, A. hortensis

0.4 mM Total DWa Brownell 1968

Atriplex nummularia and A. inflata 0.1 and
0.6 mM

Shoot FWb; leaf chlorophyll,
sugar, and starch concentration

Brownell and Jackman 1966

Japanese millet (Echinochloa utilis), Bermuda
grass (Cynodon dactylon), Shortleaf spikesedge
(Kyllinga brevifolia), Joseph’s-coat (Amaranthus
tricolor), Kochia childsii, Moss-rose (Portulaca
grandiflora)

0.1 mM Total DW Brownell and Crossland 1972

Kochia childsii, Rhodes grass (Chloris gayana),
Amaranthus caudatus L.

0.1 mM Total FW Johnston et al. 1988

Joseph’s-coat (Amaranthus tricolor L.) 0.5 mM Growth rate Ohta et al. 1987

Maize (Zea mays L.), Barnyard grass (Echinochloa
crus-galli L.), Hog millet (Panicum miliaceum L.),
Kleingrass (Panicum coloratum L.), Panicum
dichotomiflorum, Panicum maximum, Rhodes
grass (Chloris gayana)

0.1 mM Growth rate Ohta et al. 1988

Joseph’s-coat (Amaranthus tricolor L.) 0.5 mM RGRc, nitrate reductase activity,
O2 evolution, chlorophyll
content

Ohta et al. 1989

Tomato (Solanum lycopersicum L.) 1 mM Total DW Woolley 1957

a Dry weight
b Fresh weight
c Relative growth rate
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pyruvate increased, whereas central C4 metabolites,
such as malate, aspartate, and PEP, decreased. In the
C3 species tomato, by contrast, none of these metabo-
lites was influenced by Na+ (Johnston et al. 1988).
Furthermore, in the C4 species Atriplex tricolor and
Kochia childsii, when sodium-deficient, the activity of
photosystem II (PS II), in mesophyll chloroplasts, was
altered, whereas it remained unaffected in bundle-sheath
chloroplasts (Johnston et al. 1989; Grof et al. 1989).
Shoot nitrate assimilation is also confined to mesophyll
cells in C4 species (Moore and Black 1979; Vaughn
and Campbell 1988). As Na+ is known to enhance
nitrate uptake in roots and nitrate assimilation in
leaves, as shown in Amaranthus tricolor (Ohta et al.
1989), this may serve as one contributor to the beneficial
effects seen.

Na+-coupled pyruvate transport in chloroplasts: one
solid role for Na+ in C4 species

Sodium is known to influence C4 metabolism in several
species in another significant way, by virtue of facilita-
tion of pyruvate uptake into chloroplasts. This was first

demonstrated physiologically in Panicum miliaceum,
where pyruvate uptake into chloroplasts was found to
be proportional to the concentrations of Na+ supply,
indeed following a 1:1 ratio for Na+:pyruvate in the
transport function (Ohnishi and Kanai 1987). This sug-
gested the existence of a Na+-dependent pyruvate
cotransport system in chloroplasts, possibly driven by a
light-stimulated, H+-coupled, Na+ efflux pump (Ohnishi
et al. 1990; Furumoto et al. 2011). Pyruvate is central to
the CO2-concentrating mechanism in C4 species, and
it serves as a precursor to several major biochemical
pathways in all plants, such as fatty acid synthesis
and isoprenoid metabolism; furthermore, as the end
product of glycolysis, it is positioned at a key inter-
section point of both primary and secondary metabo-
lism (Schwender et al. 2004). In C4 species engaging
in the ‘MEP’ (methyl-erythritol-phosphate) pathway,
pyruvate import into chloroplasts, across the enve-
lope, is pivotal to the C4 habit, and it is specifically
here where Na+-coupling is now established (Weber
and von Caemmerer 2010). By contrast, at the func-
tional level, the Na+-coupled mechanism is not found
in chloroplasts of corn, offering at least a partial

Table 2 Survey of published studies that report Na+ as a beneficial nutrient (macronutrient, >1 mM) for some plant species

Species [Na+]external Measure(s) improved by Na+ Reference

Bladder saltbush (Atriplex vesicaria) 0.04–1.2 mM Total FWa, DWb Brownell 1965

Bladder saltbush (Atriplex vesicaria) 0.1–1.2 mM DW Brownell and Wood 1957

Beet (Beta vulgaris L.) 1–32 mM Shoot FW, DW; Root FW, DW El-Sheikh et al. 1967

Suaeda aegyptiaca 5–500 mM Shoot FW, DW; succulence Eshel 1985

Cacao tree (Theobroma cacao) 0.25–2 mM Photosynthetic rate, WUEc, mineral
nutrition

Gattward et al. 2012

Beet (Beta vulgaris L.) 16 mM Water content, total FW Lawlor and Milford 1973

Barley (Hordeum vulgare L.) 8 mM Total DW Mullison and Mullison 1942

Beet (Beta vulgaris L.) 2–10 mM Leaf area and DW Nunes et al. 1984

Atriplex portulacoides L. 20–700 mM RGRd Redondo-Gómez et al. 2007

Arthrocnemum macrostachyum 171–510 mM RGR Redondo-Gómez et al. 2010

Lolium perenne L., Timothy (Phleum
pratense L.)

1–13 mM Nitrate reductase activity Smith et al. 1980

Beet (Beta vulgaris L.) 3.75–
4.90 mM

Leaf area and water content, total DW Subbarao et al. 1999b

Beet (Beta vulgaris L.) 1.7–3.5 mM Total DW Truog et al. 1953

Ranger alfalfa (Medicago sativa L.) 4 mM Total DW Wallace et al. 1948

Halogeton glomeratus 1–100 mM Width of lateral branches; total DW Williams 1960

a Fresh weight
b Dry weight
cWater-use efficiency
d Relative growth rate
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explanationwhy only some C4 species rely on sodium as
a nutrient (Ohnishi et al. 1990; Aoki et al. 1992; Weber
and von Caemmerer 2010). Recently, in a benchmark
study, Furumoto et al. (2011) characterized the Na+-
pyruvate cotransport mechanism at the molecular level,
by identification of the BASS2 gene in Flaveria and
Cleome, and showing the protein’s localization to the
chloroplast envelope and the facilitation of pyruvate in-
flux. They showed widespread distribution of the gene
across various plant groups, but also its absence, at the
protein expression level, in corn, in agreement with the
earlier physiological observations, and in keeping with
the great diversity known to exist among C4 species
(Weber and von Caemmerer 2010), and the multiple
evolutionary origins of the trait (Langdale 2011; Sage et
al. 2011; Williams et al. 2012). However, there now
appears little doubt that themechanism of Na+-dependent

pyruvate transport is central to the Na+ requirement in
many C4 species. Na

+-coupled transport systems are very
common in animals and marine protists, and one won-
ders how much flexibility might exist in other transport
systems that are normally coupled to H+ gradients (Britto
and Kronzucker 2005), to utilize Na+ gradients under
special circumstances. This possibility is suggested, for
instance, by the demonstration, in heterologous systems,
such as Xenopus oocytes (albeit not necessarily in planta;
Walker et al. 1996; Box and Schachtman 2000), that K+

transporters of the HKT family, normally acting as
uniporters or H+-coupled mechanisms, can undergo
Na+ coupling (Rubio et al. 1995; Haro et al. 2005).
Another intriguing suggestion is that fluxes of both phos-
phate and nitrate might be coupled to the steep electro-
chemical potential gradient for Na+ in the marine angio-
sperm Zostera marinus (Rubio et al. 2005).

Table 3 Survey of published studies that report Na+ as a benefi-
cial nutrient for some plant species. Sodium concentrations in
these studies were expressed as kg/ha or g/kg soil, but since field

capacity of the soils were not specified, they cannot be compared
directly with other studies

Species [Na+]external Measure(s) improved by
Na+

Reference

Eucalyptus grandis 68 kg/ha Tree height, basal area,
biomass

Almeida et al. 2010

Beet (Beta vulgaris L.) 100–800 kg/ha Sugar yield Draycott and Bugg 1982

Beet (Beta vulgaris L.) 150 kg/ha Sugar yield Draycott and Durrant 1976

Beet (Beta vulgaris L.) 45–225 kg/ha Sugar yield Draycott et al. 1970

Beet (Beta vulgaris L.) 100 kg/ha Sugar yield Durrant et al. 1974

Beet (Beta vulgaris L.) 250 kg/ha Water content, root DWa,
sugar content

Durrant et al. 1978

Pangola grass (Digitaria eriantha) 87 and 176 kg/ha DW Gammon 1953

Beet (Beta vulgaris L.) 30–90 kg/ha FWb, water content Haneklaus et al. 1998

Beet (Beta vulgaris L.), Cabbage (Brassica
oleracea), Swiss chard (Beta vulgaris)

560–1121 kg/ha Yield (FW) Harmer and Benne 1945

Celery (Apium graveolens), Beet (Beta
vulgaris L.), Wheat (Triticum aestivum L.),
Pea (Pisum sativum L.)

280–1120 kg/ha Yield (FW) Harmer et al. 1953

Cotton (Gossypium [species not specified]) 129.92 or 163.52 kg/ha Total FW Lancaster et al. 1953

Beet (Beta vulgaris L.), Flax (Linum
usitatissimum L.), Oat (Avena sativa L.)

49.28 and 98.56 kg/ha Total DW Larson and Pierre 1953

Oat (Avena sativa L.), Turnip (Brassica rapa
var. rapa), Potato (Solanum tuberosum L.),
Italian ryegrass (Lolium multiflorum)

100–800 kg/ha Yield Lehr 1950

Cotton (Gossypium [species not specified]) 26.88, 53.76, and 80.64 kg/ha Total FW Marshall and Sturgis 1953

Beet (Beta vulgaris L.) 0.6 g/kg soil Total DW, succulence Milford et al. 1977

Beet (Beta vulgaris L.) 300 kg/ha Total FW Szulc et al. 2010

Beet (Beta vulgaris L.) 90–180 kg/ha Yield Tinker 1965

a Dry weight
b Fresh weight
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It is noteworthy to point out that the interest in
understanding operation and optimization mecha-
nisms, such as Na+-pyruvate cotransport, in C4 species
is also of great importance as efforts are intensified to
transfer the C4 habit to major C3 crops, such as rice
(Furbank et al. 2009; Weber and von Caemmerer
2010).

HKT2—entry portal for Na+ at low external
concentrations, and prerequisite for the ion’s benefits?

If Na+ can be readily beneficial in so many plant
species and, associated with this, accumulate to sig-
nificant concentrations in plant organelles and organs
to levels similar to those of K+ (Gattward et al. 2012;
Schulze et al. 2012), there must be efficient pathways
for its entry across root plasma membranes.
Interestingly, despite considerable effort, entry paths
for Na+ into roots have not as yet been successfully
identified at the molecular level across taxonomic
groups (Munns and Tester 2008; Zhang et al. 2010;
Kronzucker and Britto 2011; Cheeseman 2013), while
a strong body of evidence has shown, at least in
grasses, that one family of genes, HKT2 (formerly
referred to as HKT1, but the latter designation is now
reserved for a group of Na+ transporters believed to be
predominantly involved in intra-plant Na+ transfer
from root to shoot; Sunarpi et al. 2005; Møller et al.
2009), encodes transporters that can transport Na+ at
substantial rates across root plasma membranes, espe-
cially when K+ is limiting (Horie et al. 2001, 2011;
Laurie et al. 2002; Munns and Tester 2008; Hauser
and Horie 2010). This is instructive, given that Na+

benefits tend to be at their most pronounced when
K+ is in short supply, and, indeed, Na+ can assume
some of the functions of K+. Also of interest, how-
ever, is that HKT2 members appear to be absent in a
great many plant species, including in the currently
leading genetic model system Arabidopsis thaliana
(Sunarpi et al. 2005; Munns and Tester 2008; Møller
et al. 2009). Arabidopsis is a particularly interesting
example in that it possesses only one gene from the
entire HKT family, AtHKT1, and it has been suggested
that this limited arsenal may be a common feature in
dicotyledonous plants, while grasses typically have
many members of both the HKT1 and HKT2 families.
Haro et al. (2010), however, observed that, nevertheless,
K+-deprivation-enhanced Na+ accumulation, and high-
affinity Na+ uptake, were observed in 16 randomly

chosen crop species, including dicotyledonous ones
(e.g. sunflower, onion, and alfalfa), and concluded
that, therefore, the molecular picture for Na+ uptake,
even in the “high-affinity” range, is more complex
than merely involving members from the HKT2
group of transporters (e.g. HKT1 might yet be found
to engage in primary uptake, as suggested previously
in Arabidopsis; Rus et al. 2001; Kronzucker and
Britto 2011). Only in rice, and the Aveneae and
Triticeae tribes of the Poaceae family, has high-affinity
uptake been definitively associated with HKT trans-
porters (Haro et al. 2010). Thus, HKT (in particular
HKT2) transporters may be validly discussed as proba-
ble candidates for high-affinity Na+ transport that
may form a molecular foundation for Na+ benefits
in grasses, while the search for molecular candidates
mediating high-affinity Na+ uptake in other species
must be considered ongoing.

In this context, it is interesting to speculate on
the importance of Na+/K+ symport, which has been
reported in several studies (Rubio et al. 1995;
Spalding et al. 1999; Szczerba et al. 2008), as such
a function could offer additional explanatory power
for synergistic effects of co-provision of the two
ions. However, only very limited (and misleading;
see Haro et al. 2005) demonstrations of such a
function outside heterologous expression systems,
such as Xenopus oocytes and yeast cells, have thus
far occurred (Rubio et al. 1995; Spalding et al.
1999; Haro et al. 2005). Other than these instances,
little evidence for Na+-coupled K+ uptake exists in
terrestrial plants (Maathuis et al. 1996; Rodríguez-
Navarro and Rubio 2006; Corratgé-Faillie et al.
2010; Schulze et al. 2012), although it may play a
significant role in aquatic angiosperms and algae
(Maathuis et al. 1996). A far more common obser-
vation is that Na+, at already modest (below-saline)
concentrations, inhibits K+-influx systems, both in
the high- and low-affinity transport ranges for K+

(Rains and Epstein 1967a, b, c; Cheeseman 1982;
Jeschke 1982; Kochian et al. 1985; Benlloch et al.
1994; Schachtman and Schroeder 1994; Santa-María
et al. 1997; Flowers and Hajibagheri 2001; Fuchs et
al. 2005; Martínez-Cordero et al. 2005; Kronzucker
et al. 2006, 2008; Nieves-Cordones et al. 2007;
Wang et al. 2007), and can, additionally, stimulate
K+ efflux (Shabala et al. 2006; Britto et al. 2010;
Coskun et al. 2013), thus depressing K+-utilization
efficiency in a two-pronged fashion.

6 Plant Soil (2013) 369:1–23

Author's personal copy



Can Na+ assume K+ functions?

Despite its reputation as a toxic ion in the plant biology
realm, from a physico-chemical perspective, Na+ does
not particularly stand out—it shares its basic chemical
properties, and reactivities, with most of its alkali-metal
(principal-quantum-number-one) peers, and, despite
some differences in both hydrated and non-hydrated
radii, is, in fact, quite similar to K+. It certainly does
not possess inherent qualities that flag it as especially
toxic in relation to biological matrices and processes,
unlike, for instance, strongly Lewis-acidic metals, such
as transition metals and heavy metals. Indeed, on
account of its physico-chemical similarity to K+, a
role for Na+ as a generic, “benign” osmoticum in
plant vacuoles is especially plausible and reasonable.
However, differences in chaotropic and lyotropic
properties of the two ions in terms of their effects
on water and molecular structure, while controversial
(Mancinelli et al. 2007; Galamba 2012), may yet
emerge as important to toxicity manifestations in
intracellular compartments (Cheeseman 2013), and as
a foundation for the maintenance of a high cytosolic
K+/Na+ ratio, although this has not yet been investigated
stringently. A good number of the studies listed in
Tables 1, 2, and 3 supports this notion. For instance, in
beet, a replacement of 95 % of the plant’s leaf-tissue K+

by Na+ resulted in no measurable negative impact on
osmotic potential (Subbarao et al. 1999b). It has, thus,
been concluded that a near-complete replacement of K+

by Na+ in its osmotic function is possible (Shabala and
Mackay 2011a, b; Gattward et al. 2012). For other, non-
osmotic functions of K+, replacement by Na+ may,
however, not be as easily achieved. From the perspec-
tive of biochemical functions, such as in the cytoplasm,
poorly characterized as it remains (Cheeseman 2013),
there is believed to be a rather strict requirement for K+,
and a strong maintenance of its concentration (Britto
and Kronzucker 2008); indeed, K+ is considered essen-
tial for protein synthesis (Hall and Flowers 1973; Wyn
Jones et al. 1979) and oxidative phosphorylation
(Flowers 1974), both of which are equally inhibited by
Na+ in glycophytes and halophytes (Greenway and
Osmond 1972). More generally, K+ is considered essen-
tial for the functioning of 50–60 enzymes (Leigh and
Wyn-Jones 1986). However, it has also been shown that,
at the enzyme level, Na+ can assume some of the roles of
K+ at least in several prominent instances, as, e.g., in the
case of sucrose synthase (Nitsos and Evans 1969). The

latter authors showed a requirement of some 50 mMK+

for the enzyme’s optimal function, and found equimolar
concentrations of Na+ to be only ~20 % effective, but
not inhibitory. Similarly, NH4

+, Rb+, and Cs+ were able
to substitute for K+ at ~80 % effectiveness. Thus, while
not as effective as K+, it is not inconceivable that Na+, at
modest cytosolic levels, such as those reported in some
studies even under saline conditions (Carden et al.
2003), may aid enzyme function rather than inhibit it,
as long as cytosolic K+ concentration concurrently
remains at a reasonable level (Kronzucker et al.
2008; and see Fig. 1). Thus, if high-uptake situations
can be maintained for Na+, in particular under low

Fig. 1 Schematic illustration of the thermodynamics and mecha-
nism of K+ and Na+ interactions at the plasma-membrane interface
of plant roots. a Under non-osmotic challenges, Na+ may inhibit
(red) or stimulate (green) K+ transport (blue arrows) (Santa-María
et al. 1997; Thiel and Blatt 1991; Shabala et al. 2006). Cytsolic
concentrations of K+ and Na+ ([K+]cyt and [Na+]cyt, respectively)
and resting membrane potentials can alter with long-term Na+

stress (Hajibagheri et al. 1988; Flowers and Hajibagheri 2001;
Carden et al. 2003; Kronzucker et al. 2006). b Sudden salinity
stress can result in membrane disintegrity (osmotic shock) and the
release of cellular contents, includingK+ and water (Nassery 1975;
Cramer et al. 1985; Britto et al. 2010; Coskun et al. 2013)
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K+ provision (but not complete deprivation; Evans
and Sorger 1966), or when K+ uptake is partially
inhibited, including by Na+ itself (see above, and
Figs. 1 and 2), Na+ may well “rise to the challenge”
of filling in for K+ in more than one of its key
functions. In this context, it is also informative that
several transport proteins, previously thought to be
highly ion-specific, such as KUP/HAK/KT, AKT and
NHX proteins, have been shown to engage in the
transport of either K+ and Na+ under variable circum-
stances (Zhang and Blumwald 2001; Venema et al.
2002; Kronzucker and Britto 2011).

Can Na+ replace K+ in stomatal guard cells?
The mechanistic implications are not trivial

One specific subset of K+ functions where Na+ has
received particular attention is the replacement of K+

in stomatal guard cells (Humble and Hsiao 1969;

Pallaghy 1968; Terry and Ulrich 1973; Jarvis and
Mansfield 1980; Hampe and Marschner 1982; Véry
et al. 1998; for review, see Robinson et al. 1997;
Roelfsema and Hedrich 2005). This is to be regarded
as a special case of replacement of K+ in its osmotic
role, affecting especially the vacuoles of guard cells.
This stipulation is particularly interesting, given that
highly K+-specific component mechanisms have been
identified for both stomatal opening and closing, and
large rates of ion flow must be established to facilitate
prompt, and meaningful, stomatal response (see
Fig. 2; Humble and Raschke 1971; Leonhardt et al.
1997; Schroeder et al. 1984, 1987; Schroeder 1988).
Indeed, while some electrophysiological studies have
shown that high Na+ flux activity, in a domain similar
to what is normally seen for K+, can be observed in
guard cells (Zhao et al. 2011; cf. Schroeder et al. 1987;
Schroeder 1988), current molecular-mechanistic
models for stomatal function leave little room for
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Fig. 2 Current model of ion transport in guard cells, highlighting
Na+-specific mechanisms. K+ influx channels (KAT1, KAT2,
AKT1, AKT2/3, AtKC1; Pandey et al. 2007), integral to stomatal
opening, can mediate Na+ fluxes in some instances (Schroeder et
al. 1987; Schroeder 1988; Obata et al. 2007), as can members of
the KUP/HAK/KT family (Santa-María et al. 1997; Takahashi et
al. 2007), although their involvement in guard cell functioning is
currently speculative. Moreover, both classes of transporters can
be directly inhibited by Na+ (Fu and Luan 1998; Thiel and Blatt
1991). Non-selective cation channels (NSCCs) can also mediate

Na+ fluxes (Zhao et al. 2011), although their molecular/genetic
characterization is currently unknown. At the tonoplast, Na+

sequestration is linked to cation exchangers (CAX and NHX;
Zhao et al. 2008; Apse et al. 2003) and vacuolar channels (SV
and FV; Ivashikina and Hedrich 2005; Isayenkov et al. 2010).
SV channels are also blocked by luminal Na+ (Ivashikina and
Hedrich 2005). K+ efflux via channels (GORK; Hosy et al.
2003), critical to stomatal closing, can be stimulated by Na+

indirectly, via membrane depolarization (Shabala et al. 2006)
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Na+, and, to postulate its involvement, necessitates
that one step outside the box of established thought.

As Fig. 2 illustrates, the entry of K+ into guard cells,
to facilitate stomatal opening, requires the engagement
of potassium channels from the Shaker family
(Schroeder et al. 1984, 1987; Schroeder 1988; Thiel et
al. 1992; for review, see Schroeder et al. 2001; Pandey et
al. 2007). The Nobel-Prize-winning work on Shaker
channels has furthermore provided a model, based on
X-ray crystallography, of K+ binding on the outside of
the channel that specifically disallows the binding of
Na+—according to the model, the ions are bound in
their “naked”, dehydrated state, and the difference in
ionic radii makes it impossible for the smaller Na+ ion to
bind successfully to the oxygen-enriched “corners” of
the channel (Doyle et al. 1998; Dreyer and Uozumi
2011). This model is supported by electrophysiological
studies on guard cell protoplasts that demonstrate chan-
nel conductances with high (more than an order of
magnitude larger) K+ selectivity over Na+ (Schroeder
et al. 1984, 1987; Schroeder 1988; Blatt 1992; Müller-
Röber et al. 1995; Nakamura et al. 1995; Véry et al.
1995; see also Véry et al. 1998; Lebaudy et al. 2008).
However, given the multiplicity of inward-rectifying K+

channels being expressed in guard cells (Szyroki et al.
2001), and that some of these have been demonstrated to
be capable of mediating Na+ fluxes, albeit mostly in
other cell types (Golldack et al. 2003; Obata et al.
2007; Wang et al. 2007), routes for high-capacity Na+

entry might exist under some conditions that are not
currently accounted for in stomatal guard cell models
(Fig. 2). Other such possible routes include non-
selective cation channels (NSCCs), such as the cyclic
nucleotide gated (CNGC) and/or glutamate receptor
(GLR) channels (Lemtiri-Chlieh and Berkowitz 2004;
Meyerhoff et al. 2005; Wolf et al. 2005; Zhao et al.
2011; see also Véry et al. 1998; Tyerman and Skerrett
1999). It is also possible that members of the
KUP/HAK/KT family, generally attributed to primary
K+ uptake in roots (Gierth and Mäser 2007), might
contribute, as these have been shown to be capable
of mediating low-affinity Na+ fluxes in roots under
special circumstances (Santa-María et al. 1997;
Takahashi et al. 2007; see also Mäser et al. 2002), and
are also expressed in shoots (Kim et al. 1998; Rubio et al.
2000; Bañuelos et al. 2002; Su et al. 2002). However, a
specific demonstration in guard cell opening and closing
has not been made in any study of which we are aware.
At the tonoplast, vacuolar sequestration of Na+ has been

attributed to the function of Na+/H+ exchangers (NHX;
Blumwald and Poole 1985; Apse et al. 1999, 2003) and
both slow-vacuolar (SV) (Hedrich and Neher 1987;
Schönknecht et al. 2002; Ivashikina and Hedrich 2005)
and fast-vacuolar (FV) channels (Isayenkov et al. 2010).
It has further been suggested that members of the cation
exchanger (CAX) family could transport Na+ (Luo et al.
2005; see also Zhao et al. 2008), but, again, none of
these candidates is a part of current models of guard
cell function. No leading reviews or textbook trea-
tises on stomatal guard cell function have incorporat-
ed these flexibilities and, instead, they make the case
for very specific, and central, engagement of K+

channels/transporters as integrated into a tightly orches-
trated cascade of events, involving hormone binding,
Ca2+ fluxes, and membrane potential activation of K+

fluxes (Schroeder et al. 2001). This, when combined
with established molecular channel models that predict
strict exclusion of Na+ in particular for Shaker channels
(Doyle et al. 1998; Dreyer and Uozumi 2011; cf. Obata
et al. 2007; Zhao et al. 2011), poses profoundly interesting
questions both about physiological plasticities and the
applicability of strict molecular-mechanistic paradigms.

In addition to mediating Na+ fluxes, several guard
cell transporters are affected, either directly or indi-
rectly, and usually negatively, by sodium’s presence,
particularly at higher concentrations (see below).
Lastly, K+ efflux via outward-rectifying K+ channels
(e.g. GORK; Hosy et al. 2003) has been shown to be
stimulated by sodium’s depolarization effects at the
plasma membrane, which could have adverse effects
on cytosolic K+ homeostasis (Shabala et al. 2006), and
might, in turn, be expected to affect stomatal guard
cell function negatively.

It is instructive that, in some cases, authors have
reported superior stomatal performance in plants culti-
vated on high Na+/K+ ratios than on K+ alone
(Marschner 1995), and improved water-use efficiency
(Gattward et al. 2012), suggesting that Na+ may not only
fill in for K+ in the specific context of stomatal guard cell
function, but may indeed be capable of outperforming it.
We believe, in the light of the established model for
stomatal function shown in Fig. 2, this warrants detailed
attention at the mechanistic level, with potential for
intriguing, and indeed paradigm-shifting, insights into
membrane transporter function. Of further interest is the
relationship between such transport activities and the
tendency of some halophytes to reduce stomatal aper-
ture in response to Na+ supply, while some non-
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halophytes do the opposite (Robinson et al. 1997; Véry
et al. 1998).

Sodium toxicity

The potassium target

A large number of studies has shown the disruption of
both cellular and whole-plant potassium homeostasis
under sodium stress (Rains and Epstein 1967a, b, c;
Flowers and Läuchli 1983; Watad et al. 1991; Gaxiola
et al. 1992; Warne et al. 1996; Zhu et al. 1998; Santa-
Maria and Epstein 2001; Peng et al. 2004; Cakmak
2005; Kader and Lindberg 2005; Kronzucker et al.
2006; Takahashi et al. 2007; Kronzucker et al. 2008;
Britto et al. 2010; Coskun et al. 2013, cf. Seemann and
Critchley 1985). Potassium homeostasis is critical for
proper cell function, and one might ask, applying the
“lex parsimoniae” principle of William of Ockham,
whether its disruption by Na+ may perhaps be suffi-
cient to explain a large part of Na+ toxicity. It is
common in complex toxicological syndromes to invoke
a large number of causes, or confound causes and their
effects. Manifold as the effects of Na+ on critical
processes such as photosynthesis, transpiration, produc-
tion of reactive oxygen species and, ultimately, growth
and yield, are (Bazihizina et al. 2012; Cheeseman
2013), many, if not most, of these must be considered
as downstream effects rather than primary causes of
toxicity. There is no doubt that Na+, when appearing
suddenly at high concentrations, in “shock” scenarios
(see discussion in Cheeseman 2013), carries osmotic
consequences that disrupt, typically temporarily, the
membrane integrity of roots (Britto et al. 2010;
Coskun et al. 2013), or also those of shoots, such as
shown in rice (Flowers et al. 1991), preceding, or per-
haps coinciding with, more “ion-specific” effects (see
later discussions). In addition to this well-recognized
osmotic effect, a second parsimonious explanation may
lie in the disruption of potassium homeostasis—one that
may reasonably and fruitfully supplant alternative, to
date ill-substantiated (Kronzucker and Britto 2011), hy-
potheses, such as those of “toxic” Na+ fluxes or cyto-
solic K+/Na+ ratios (Maathuis and Amtmann 1999;
Davenport and Tester 2000; Yao et al. 2010; see below).
The decline in cytosolic [K+] ([K+]cyt) under saline
conditions is well documented (Hajibagheri et al.
1987, 1988; Binzel et al. 1988; Schroeppel-Meier and

Kaiser 1988; Speer and Kaiser 1991; Hajibagheri and
Flowers 2001; Carden et al. 2003; Kronzucker et al.
2006; see also Fig. 1) and is attributable to sodium’s
effects on K+ transport (Szczerba et al. 2008;
Kronzucker and Britto 2011). Na+ has been shown to
suppress K+ influx in both its high- and low-affinity
ranges, particularly at millimolar concentrations
(Cheeseman 1982; Jeschke 1982; Schachtman and
Schroeder 1994; Rubio et al. 1995; Gassmann et al.
1996; Maathuis et al. 1996; Santa-María et al. 1997;
Martínez-Cordero et al. 2005; Kronzucker et al. 2006,
2008; Nieves-Cordones et al. 2007). Some studies have
reported only weak Na+ effects (Epstein 1961; Epstein
et al. 1963; see also Seemann and Critchley 1985), or
even stimulations of K+ influx by Na+ (Rubio et al.
1995; Spalding et al. 1999), but such studies are in
the minority. As pointed out earlier in this review, and
powerfully by others (Walker et al. 1996), some
conflicting data on this front most probably arise from
differences in experimental approaches, in particular be-
tween heterologous expression systems, excised roots,
and intact plants (Haro et al. 2010). Overall, there is
now broad consensus that the predominant effect of
Na+ co-presence in K+-containing media is one of af-
fecting K+ homeostasis negatively (Kronzucker et al.
2008).

Figure 1 summarizes the key events that are expected
to lead to compromised cytosolic K+ homeostasis in
typical root cells. Na+ can directly inhibit high-affinity
K+ transporters of the KUP/HAK/KT family (Santa-
María et al. 1997; Quintero and Blatt 1997; Fu and
Luan 1998; Senn et al. 2001) and Shaker-type K+ chan-
nels (Thiel and Blatt 1991; Qi and Spalding 2004; Fuchs
et al. 2005; Wang et al. 2007). Moreover, transcript
abundances of both KUP/HAK/KT transporters (Su et
al. 2002; Nieves-Cordones et al. 2007) and Shaker-type
K+ channels (Su et al. 2001; Golldack et al. 2003; Pilot
et al. 2003) can be affected negatively by NaCl. In most
cases, transport inhibition is believed to be mediated by
Na+ binding to the outside of carriers and channels
(Szczerba et al. 2008), although, in the case of some
Shaker-type channels, a mechanism has also been pro-
posed whereby small concentrations of cytosolic Na+

(near 10 mM) can effect inhibition from the inside of the
cell (Qi and Spalding 2004); such concentrations are
considered easily attained (Carden et al. 2003;
Kronzucker and Britto 2011). In addition, as pointed
out previously, K+ efflux via outward-rectifying chan-
nels has been shown to be stimulated by Na+-induced
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depolarization of the plasma membrane (Shabala et al.
2006; Fig. 1a), which could contribute to the decline in
[K+]cyt. Thus, a suppression of [K

+]cyt is one of the clear
consequences of sodium’s actions (perhaps not necessi-
tating the invoking of the miraculous powers of a “cy-
tosolic K+/Na+ ratio”), as is a depolarization of the
plasma-membrane potential, both instantaneously, upon
first exposure to Na+ (Shabala et al. 2003, 2006; Mian et
al. 2011; cf. Bowling and Ansari 1971, 1972;
Cheeseman 1982; Nocito et al. 2002), and in the longer
term (Malagoli et al. 2008) (Fig. 1a). Upon sudden,
“shock”, applications of higher concentrations of Na+,
membrane disintegrity due to osmotic shock and ionic
displacement (particularly of Ca2+), result in the release
of cellular contents, including K+ and water (Nassery
1975, 1979; Lynch and Läuchli 1984; Cramer et al.
1985; Britto et al. 2010; Coskun et al. 2013; Fig. 1b),
offering an alternative, or additional, explanation of
enhanced K+ release under Na+ exposure (Britto et al.
2010; Coskun et al. 2013). Combined, the above effects
of impaired K+ influx and enhanced efflux are expected
to result in blockage of K+ translocation to the shoot
(Erdei and Kuiper 1979; Botella et al. 1997; Kronzucker
et al. 2006; Munns and Tester 2008), with obvious
consequences for downstream events such as photosyn-
thesis and stomatal function.

Sodium accumulation: what is better—more or less?

Many studies (e.g. Schubert and Läuchli 1990; Cramer
1992; Schachtman and Munns 1992; Davenport and
Tester 2000; Munns and Tester 2008; Møller and
Tester 2007; Møller et al. 2009) have suggested that
the excessive accumulation of Na+, particularly in
shoot tissue, lies at the heart of its toxicity. Indeed,
this notion has driven much investigation into the
identification of transport systems that either catalyze
primary Na+ influx into the root (Davenport and Tester
2000; Essah et al. 2003), or its distribution within the
plant (Møller et al. 2009), with the tantalizing prospect
of conferring salt tolerance by genetically modifying
the influx or localization of Na+. However, as we shall
now discuss, evidence is mounting that the assumption
that sodium accumulation must be causally linked
with its toxicity is not always a safe one.

In the case of wheat (Triticum spp.), clearly negative
correlations have been observed between Na+ accumu-
lation and growth (e.g. Schachtman and Munns 1992;
Munns and James 2003). More recent work, however,

has shown that there is considerable deviation from this
simple picture. For example, Rajendran et al. (2009),
who examined salt stress and accumulation in 12 vari-
eties of Triticum monococcum, found that two of the
four most salt tolerant varieties accumulated among the
highest amounts of Na+ in the fourth leaf (Rajendran et
al. 2009); this contrasted starkly with the other two most
tolerant varieties, which had the lowest Na+ levels.
Thus, within the most salt tolerant tertile for a single
species of wheat, there was a three- to seven-fold vari-
ation in sodium content, indicating that the relationship
between accumulation and tolerance is by no means
straightforward. Similarly, in a recent large survey of
bread wheat (Triticum aestivum) genotypes, there was
no clear relationship between tissue Na+ exclusion and
salinity tolerance (Genc et al. 2007). Although it has
been suggested that this was due to shoot Na+ accumu-
lation being below the toxicity threshold (Møller and
Tester 2007), these levels were nevertheless far from
negligible (100–300 mg kg−1), and, more importantly,
did reduce shoot dry matter, on average, by one-third
compared to controls, and reduced total biomass and
yield by 50 %. In the case of corn, increased influx and
shoot accumulation of Na+ has been linked to its toxicity
in some studies (Schubert and Läuchli 1990; Cramer
1992), while Cramer et al. (1994) later showed that Na+

accumulation in the shoots of two varieties of hybrid
corn did not reflect their relative salt tolerances, con-
cluding that salinity-induced growth depression was
primarily due to osmotic stress. Perhaps the most sur-
prising study of this nature in the realm of cereal grasses
(Yeo et al. 1990) was conducted in rice, a particularly
salt-sensitive species. In this survey of 150 rice geno-
types, shoot sodium concentrations accounted for only a
small degree of variation in survival under saline condi-
tions. This is surprising, given that one of the leading
causes of Na+ toxicity in rice is thought to be apoplastic
bypass flow to the shoot (Flowers et al. 1991).

Because of the substantial work that has been done
at both ecophysiological and molecular levels in
Arabidopsis thaliana, it is instructive to consider the
question of how Na+ accumulation, particularly in the
shoot, affects Na+ tolerance in this model species. In a
pioneering study on Na+ transport and accumulation in
A. thaliana, Essah et al. (2003) showed that, although
A. thaliana plants grown under 60-fold differences in
external [Ca2+] showed 6-fold differences in per-plant
accumulation of Na+ (and 4-fold differences in Na+

accumulation per gram root), there were no differences
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in biomass between them. More recently, screening of
12 A. thaliana accessions yielded two coastal popula-
tions with reduced AtHKT1 expression that apparently
resulted in increased shoot Na+ and, surprisingly,
greater salt tolerance (Rus et al. 2006). In a follow-
up study (Baxter et al. 2010), many more such salt-
tolerant accessions displaying this “weak allele” at the
AtHKT1;1 locus were discovered, often in populations
growing in close proximity to coastal areas. Another
recent survey, comparing four ecotypes of A. thaliana,
indicated no inverse relationship between shoot Na+

concentration and Na+ tolerance (Jha et al. 2010).
Studies on A. thaliana mutations which confer

salt tolerance or hypersensitivity also cast doubt on
the concept of elevated tissue Na+ being detrimental
under salinity stress. For instance, Arabidopsis plants
overexpressing the vacuolar Na+/H+ antiporter AtNHX1
were able to thrive on NaCl concentrations as high as
200 mM, exhibiting far superior growth than the wild
type while containing about 30 % more Na+ (Apse et al.
1999). Similarly, overexpression of OsNHX1 in upland
rice resulted in growth significantly higher than that of
wild type, while at the same time displaying both in-
creases in shoot Na+ and decreases in root and shoot K+

(Chen et al. 2007). Overexpression of the HvHKT2;1
gene (whose product is implicated in sodium
influx—see above) in young barley plants resulted in
improved growth despite increased Na+ uptake, translo-
cation, and shoot accumulation (Mian et al. 2011).
Conversely, disruption of the sos1 gene, which putative-
ly encodes an efflux transporter for Na+ (but which,
importantly, is also implicated in xylem loading for
root-to-shoot Na+ transfer), has been shown to result in
Arabidopsis plants that are over 20 times more salt-
sensitive than wild type, while accumulating as little as
half the amount of tissue Na+ (Ding and Zhu 1997).

While perhaps surprising given the emphasis on re-
duced Na+ uptake and translocation being a key to im-
proved salt tolerance, the above studies in Arabidopsis
thaliana are consistent with others involving members of
the Brassicaceae. Indeed, the salt-including habit of many
species in this family has been documented as early as
1896 (von Marilaun 1896). In more recent times, He and
Cramer (1993) investigated K+/Na+ ratios in shoot tissue
of sixBrassica species, near relatives of Arabidopsis, and
found that they bore no relation to salt tolerance, while
Porcelli et al. (1995) showed that yields and shoot growth
of Brassica napus plants were not correlated with tissue
K+/Na+ or Ca2+/Na+ ratios.

In cases where improvements in growth under salin-
ity are accompanied by increased shoot Na+ content, the
concept of “tissue tolerance” is often proposed. Tissue
tolerance is currently interpreted as involving effective
sequestration of Na+ into vacuoles, via transporters such
as NHX1, where it will not harm cytosolic functions
(Apse et al. 1999; Munns and Tester 2008; Møller et al.
2009; Jha et al. 2010). In support of this idea, Jha et al.
(2010) have shown that there is a positive relationship
between salt tolerance and expression levels of AtAVP1,
which encodes an H+-pumping pyrophosphatase that is
likely to be critical in the vacuolar sequestration of Na+.
In contrast to such studies, however, the survey of rice
cultivars by Yeo et al. (1990; see above) indicated that
there was no correlation between shoot Na+ and tissue
tolerance; moreover, tissue tolerance was negatively
correlated with both plant survival and plant vigour.
In any case, even when increased shoot Na+ and in-
creased salt tolerance occur together, the term “tissue
tolerance” appears somewhat weak. Such plants not
only appear to “tolerate” higher levels of Na+ in their
tissues, but increased sequestration may in fact be a net
benefit in such instances, possibly conferring greater
osmotic capacity upon cells having vacuoles enriched
in sodium. In this respect, beneficial Na+-including pro-
cesses in glycophytes under salt stress may operate as
they do under benign conditions or in halophytes (see
Section I). A more startling speculation that arises from
this analysis is that engineering plants to reduce their
uptake of Na+ and/or its translocation to the shoot might
not be an effective solution to the problem of salt stress;
indeed, the reverse could be true in many instances.
Until these accumulation issues are better resolved, the
roles of Na+ transporters in salt tolerance and toxicity
will not be adequately understood. What is clear at this
point is that salinity stress and tolerance is a complex,
multi-faceted trait, and cannot be predicted by simple
indicators such as Na+ accumulation (Yeo et al. 1990;
Møller and Tester 2007; Rajendran et al. 2009).

Osmotic and ionic effects: what is the difference?

Osmotic stresses due to the presence of high salt
concentrations in both the rooting medium and plant
cell walls have long been known to be the chief initial
cause of sodium toxicity (Jennings 1976; Greenway
and Munns 1980; Munns and Tester 2008). Severe
reductions in extracellular water potentials due to high
salt loads can produce rapid dehydration and consequent
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damage of cells, and the similarities between salt and
drought stresses are remarkable (Munns 2002). In the
case of rice, most, if not all, salt-induced damage in the
leaves might be due to osmotic stresses caused by Na+

buildup in the leaf apoplast (the “Oertli hypothesis”;
Flowers et al. 1991; Krishnamurthy et al. 2011). Less
clear, however, are the mechanisms underlying the
secondary, “ion-specific” aspects of salt stress
(Munns et al. 1995). Studies investigating these as-
pects often compare plant responses to salt provision
against isosmotic provisions of non-ionic compounds
such as polyethylene glycol, but these cannot provide
a distinction, for example, between ion-specific ef-
fects of Na+ and Cl− or K+, or between NaCl and
other salts. Instead, chemically distinct, but isosmotic,
salt treatments must be used (Greenway and Munns
1980; Kingsbury and Epstein 1985; Tavakkoli et al.
2010). Another caveat of such work is that, since these
effects occur over a longer time scale than osmotic
effects, short-term experiments are not appropriate
(Munns et al. 2005; Tavakkoli et al. 2010).

While most studies of this nature do reveal non-
osmotic consequences of excessive salt accumulation,
their results can vary widely among plant systems; for
instance, Na+ has been found to inhibit photosynthetic
processes in cereals such as rice and wheat, while Cl−

appears to be the more important ion in fava bean, and
woody perennials such as citrus and grapevine
(Tavakkoli et al. 2010). In addition, it remains difficult
to distinguish between ion-specific and strictly osmotic
effects (Greenway and Munns 1980; Yadav et al. 2011).
Moreover, little is known about the deleterious action of
hyperaccumulating ions in vivo, particularly within the
cell. By contrast, the harmful effects of Na+ on the
transport and accumulation of nutrient ions, particularly
K+, is becoming very clear (see above), as reinforced by
the recent finding that the Na+-specific effects in
salinity-treated bean plants were impaired K+ and
Ca2+ nutrition, and stomatal regulation (Tavakkoli et
al. 2010).

One reason why Na+-specific toxicity mechanisms
within the cell are poorly understood is that there is
little certainty regarding intracellular Na+ concentra-
tions, particularly in the cytosol. While the mainte-
nance of a high K+/Na+ activity ratio in the cytosol of
plant root cells is frequently described in the literature
as being a critical determinant of plant performance
under salinity stress, direct evidence supporting this
contention is, by comparison, extremely rare. While

there is a strong consensus from independent lines of
evidence that the cytosolic levels of K+ in plant cells
are typically around 100 mM (Walker et al. 1996;
Britto and Kronzucker 2008), measurements of cyto-
solic Na+ differ dramatically from one another,
depending on the methods used (Kronzucker and
Britto 2011). This can be illustrated by comparing
two studies examining the same pair of barley culti-
vars, one using X-ray microanalysis (Flowers and
Hajibagheri 2001), the other using intracellular Na+-
specific electrodes (Carden et al. 2003); estimates
from the two studies disagree from 4- to 90-fold (al-
though it should be noted that different exposure times
to elevated NaCl were used). Despite lack of consen-
sus on this critical parameter, cytosolic K+/Na+ ratios
are frequently invoked as central to sodium toxicity.
For instance, in what is perhaps the most highly influ-
ential review on this subject (cited over 300 times),
Maathuis and Amtmann (1999) provide only three
references to support the claim that “cytosolic levels
of Na+ in plant cells range from low millimolar levels
to around 100 mM”. One of these references is to a
conference abstract (Carden et al. 1998), one to a study
using the giant alga Acetabularia (Amtmann and
Gradmann 1994, which reports values for [Na+]cyt of
up to 300 mM), and the third reports estimates of cyto-
solic K+ and Cl− using multiple methods, but does not
contain any data on Na+ (Hajibagheri et al. 1988).
Despite the rather glaring lack of convincing measure-
ments of cytosolic sodium, however, this and other
similarly data-poor reviews continue to be cited in sup-
port of its presumed toxicological role.

Nevertheless, the issue of cytosolic Na+ accumulation
may yet prove important to explaining the causes of
sodium toxicity. New experimental evidence supporting
this connection might soon be achieved thanks to recent
improvements in intracellular Na+-specific microelec-
trode technology. While not without pitfalls of their
own (Carden et al. 2001), measurements with such
electrodes are more direct and, perhaps, less afflicted
by assumptions and technical problems than those using
older methods such as compartmental analysis by tracer
efflux (CATE) or X-ray microanalysis. X-ray microanal-
ysis studies must contend with extraneous contributors
to relevant spectral signals, low count rates, specimen
instability, preparative artifacts, and determinations of
cytosolic water content (Roomans 1988; Carden et al.
2003). CATE is often afflicted by the appearance of
large tracer f luxes from poorly understood
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compartments, which, if erroneously identified as cyto-
solic, can yield extremely large artificial values of
[Na+]cyt (Britto and Kronzucker 2012). Indeed, reported
unidirectional Na+ fluxes across the plasma membrane,
as measured with CATE or with short-term tracer uptake
experiments, appear at times to be too high to be
energetically feasible (Britto and Kronzucker 2009).
When coupled with even the small cytosolic exchange
half-times for Na+ found in the literature (Essah et al.
2003), these values can, with CATE, result in cyto-
solic [Na+] values an order of magnitude higher than
those reported using electrodes (Kronzucker et al.
2006; see below). Perhaps because of uncertainties
with these and other methods, ion-specific microelec-
trode measurements of cytosolic Na+ accumulation have
become the new standard (Munns and Tester 2008).
Surprisingly, however, given that cytosolic [Na+] is con-
sidered to be a critical factor in Na+ toxicity, very few
studies have measured it using microelectrode technol-
ogy (Carden et al. 2003; Rubio et al. 2005); clearly,
much more progress needs to be made in this area.

The study by Rubio et al. (2005) is particularly
striking as it was conducted in the marine angiosperm
Zostera marina, and found only 10.7 mM cytosolic
Na+ in an artificial seawater medium (500 mM [Na+]).
Less of an extreme gradient was found by Carden et al.
(2003) in barley seedlings exposed to 200 mM NaCl,
but here too the cytosolic Na+ activity value was low,
maximally, 29 mM. Interestingly, these are levels at
which little enzyme inhibition occurs (Greenway and
Osmond 1972; Munns and Tester 2008), so mecha-
nisms of Na+-specific toxicity may need to be sought
elsewhere. Of additional importance is the conundrum
that these low values, relative to CATE and other
methods, suggest that either unidirectional Na+ fluxes
reported across the membrane using tracers (Britto and
Kronzucker 2009), or exchange half-times for cytosolic
Na+ pools (Essah et al. 2003), have been substantially
overestimated. Another way to look at this problem is to
predict cytosolic pool sizes on the basis of unidirectional
influx across the plasma membrane and exchange half-
times for the cytosol (Cram 1969; MacRobbie 1971;
Britto and Kronzucker 2001, 2003). If we use results
from Essah et al. (2003) in an example, in which an
exchange half-time of 5 min is endorsed (Cheeseman
1982), and a unidirectional influx of as high as
300μmol g−1(fresh wt) h−1 is reported (at 200 mM
external [Na+]; see their Fig. 2), a cytosolic concen-
tration of Na+ is predicted to be about 700 mM, more

than two orders of magnitude higher than some re-
ported microelectrode measurements at the same, or
higher, external Na+ concentrations (Carden et al.
2003; Rubio et al. 2005).

A novel aspect of ion-specific effects of Na+ can be
seen in work using extracellular ion-selective micro-
electrodes (e.g. Shabala et al. 2006). Here, a sudden
provision of moderate to high NaCl has been shown to
elicit a short-term K+ efflux from the cell. However,
radiotracer and tissue experiments have shown that,
under higher NaCl, there is a much more pronounced
K+-loss effect over the long term, which has been attrib-
uted to osmotic, rather than ionic, Na+ specific stresses
(Britto et al. 2010; see above).

The role of membrane transporters

Several recent reviews have summarized the postulat-
ed mechanisms of Na+ transport into, and out of, plant
cells (Munns and Tester 2008; Zhang et al. 2010;
Kronzucker and Britto 2011; Cheeseman 2013), and,
yet, with only few exceptions, no consensus has
emerged as to the actual relative in planta roles of
the various components, and no molecular candidate
has been convincingly identified for Na+ influx under
toxic conditions. The strongest agreement in the liter-
ature currently is that certain subclasses of non-
selective cation channels (NSCCs), the voltage-
insensitive VI-NSCCs, participate critically, and most
of the evidence for this derives from electrophysiolog-
ical studies, where evidence appears incontrovertible
that NSCCs can conduct Na+ currents (see summary in
Kronzucker and Britto 2011). However, as we have
previously pointed out, the relationship of currents
obtained from such electrophysiological studies, most-
ly conducted in patch-clamp configurations in mem-
brane patches and naked protoplasts, to Na+ fluxes and
accumulation at the whole-plant level has, by no
means, been established, and many questions remain
(Kronzucker and Britto 2011). Indeed, in planta fluxes
in excess of 100 micromoles per gram (fresh weight)
per hour have been repeatedly reported in root systems
(Essah et al. 2003; Malagoli et al. 2008; Møller et al.
2009; Wang et al. 2009; Wetson and Flowers 2010),
and one can show, using established models of cation
transport and energization (Kronzucker et al. 2001;
Britto and Kronzucker 2006), that ion fluxes of this
magnitude, were they to indeed proceed across plasma
membranes, would be associated with a respiratory
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energy cost vastly in excess of the entire respiratory
budget of the plant (Malagoli et al. 2008; Britto and
Kronzucker 2009; Kronzucker and Britto 2011).

Other transporters that have received attention as
potential candidates for Na+ influx into (in particular)
roots cells in planta are the low-affinity cation trans-
porter LCT1 (Schachtman et al. 1997; Amtmann et al.
2001), the high- and low-affinity (and, at times, dual-
affinity) K+ transporters from the KUP/HAK/KT and
AKT families (Santa-María et al. 1997; Amtmann and
Sanders 1999; Blumwald et al. 2000; Golldack et al.
2003; Zhang et al. 2010), and members from the HKT
family. Those from the HKT1 subfamily are believed to
operate mostly in regulating root-to-shoot Na+ translo-
cation (Sunarpi et al. 2005; Møller et al. 2009), while
those from the HKT2 subfamily have been implicated in
primary Na+ influx at least at lower Na+ concentrations
and in grasses (Horie et al. 2001; Laurie et al. 2002;
Munns and Tester 2008; Hauser and Horie 2010; Horie
et al. 2011; see also Schulze et al. 2012). In addition, two
Na+/H+ antiport systems have been identified, one of
which, SOS1, is believed to be responsible predomi-
nantly for Na+ efflux at the plasma membrane (Shi et al.
2000), the other, NHX1, for Na+ sequestration into the
vacuole (Apse et al. 1999).

An interesting conundrum arises for modern biotech-
nologically oriented approaches, not only because the
primary influx transporters are not yet known, but be-
cause it is, in fact, not clear whether more or less Na+

entry should be a desirable goal. As previous sections of
this review show, many species benefit from inclusion
rather than exclusion of Na+, including, or perhaps
especially, under saline external conditions, and the
Na+ ion’s inherent toxicity is, from a chemical perspec-
tive, to be regarded largely as a myth. Thus, were
engineering efforts successful to produce plant lines
with silenced or downregulated influx mechanisms,
and/or overexpressed plasma-membrane efflux systems,
the result may, in many genotypes, be less tolerance, not
more. Only experiments can show what may occur, and
one eagerly awaits these. However, fundamental current
hypotheses in terms of the preference of Na+ inclusion
versus exclusion might be too simplistic. Additionally,
as touched upon in an earlier section of this review, with
respect to the role of membrane transporters in the
development of salt toxicity, the application of William
of Ockham’s “lex parsimoniae” might guide a closer
look at, for instance, sodium’s established effects on
other critical membrane transport systems, such as those

mediating potassium influx and efflux, and, related to
this, osmotic effects, before implicating additional
paradigms such as those of “toxic sodium fluxes” or
“cytosolic sodium toxicity” (Kronzucker and Britto
2011; Cheeseman 2013).

The supersession of organismal physiology: evolution
or mistake?

One final word pertains to a recent trend in the plant
sciences that may have, in our view, contributed to a
lack of progress in several critical areas within the
sodium field, that is the near-solitary focus on molec-
ular approaches to answer outstanding research ques-
tions. The study of function has, by contrast, recently
only received marginal attention, and, more frequently
than not, has not occured in planta intacta, but instead
in excised systems (e.g. Essah et al. 2003) or heterol-
ogous expression systems (e.g. Rubio et al. 1995),
such as Xenopus oocytes, yeast, or Escherichia coli.
Some of the caveats relating to this have been
discussed by others (e.g. Haro et al. 2010), but have
received insufficient hearing overall. Further, in some
prominent cases, gene and function have indeed been
treated as synonymous, even linguistically (Britto and
Kronzucker 2011). A related issue is a lack of remem-
brance with regard to work conducted in the 1950s,
60s, 70s, and 80s (and even earlier), prior to the onset
of the molecular age, which is in evidence with in-
creasing frequency. Indeed, it is not unusual for older
discoveries to be re-discovered, while much available
context is missed by insufficient awareness of the
older literature. Examples of this include the large
body of literature on Na+ as a nutrient (reviewed here),
Emanuel Epstein’s early work on the mechanisms of
Na+ transport (Rains and Epstein 1965, 1967a, b, c; by
contrast, in the related area of K+ research, Epstein’s
early kinetic studies form a pillar of the field), and the
literature on K+ loss under Na+ stress (see Britto et al.
2010). In addition, a readiness to accept dogma with-
out, in many cases, sufficient measurement, has, in our
view, and that of others (Cheeseman 2013), afflicted
the sodium field to an unusual extent. Two examples
include the role of the “cytosolic K+/Na+ ratio”, for
which few actual measurements exist and which is
yet referred to in numerous publications in the field,
and, secondly, the involvement of non-selective cation
channels (NSCCs) in mediating futile Na+ cycling
under salinity conditions, which has, in reality, not as
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yet been demonstrated conclusively in intact plant sys-
tems (Kronzucker and Britto 2011). It would be unwise
to endorse the sidelining of stringent physiological ex-
amination and critical analysis in the above areas. We
suggest that the sodium research field would benefit
from greater awareness of, and dialogue between, both
historical and recent discoveries and divergent ap-
proaches that have been, and yet should be, brought to
bear on the field’s critical outstanding questions.

Similarly, discoveries in the genetics and physiology
of Na+ nutrition and toxicity should continually be
related to the performance of plants in ecological and
agro-ecological settings. The productivity of natural
and man-made biological systems will increasingly be
subjected to potential salinity hazards, and the knowl-
edge of how Na+ cycles through and interacts with
plants, in both beneficial and deleterious ways, is
critical to the understanding and management of these
systems. Insights from the above discussions may
thus guide future selection and breeding approaches
in novel ways, by favouring Na+ inclusion traits in
species where this may be of benefit (e.g. Hordeum
vulgare, or members of the Chenopodiaceae and
Brassicaceae), rather than simply attempting to silence
them. The paucity of success in producing salt-
tolerant cultivars for many crops may in part relate
to a lack of thorough, and critical, examination of
leading paradigms about Na+ exclusion and cytosolic
toxicity; such a critical examination is indispensable if
advances are to successfully transfer from scientific
concept and the lab bench to the agricultural field.
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