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KEYWORDS Summary
ETI'USX, Potassium (K*) is an essential nutrient and the most abundant cation in plant cells.

Plants have a wide variety of transport systems for K acquisition, catalyzing K*

:lf_}_t;x’ uptake across a wide spectrum of external concentrations, and mediating K*
Potas’sium movement with_in _the plant as well as its efflux into the environmen.t. K*_ transport
responds to variations in external K* supply, to the presence of other ions in the root
environment, and to a range of plant stresses, via Ca?* signaling cascades and
regulatory proteins. This review will summarize the molecular identities of known K*
transporters, and examine how this information supports physiological investigations
of K" transport and studies of plant stress responses in a changing environment.
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Introduction

Potassium (K*) is an essential nutrient for plant
growth and development. It is the most abundant
cation in plant cells and can comprise as much as
10% of plant dry weight (Leigh and Wyn Jones,
1984; Véry and Sentenac, 2003). Plant roots take up
K* from a wide range of external concentrations
([K*]ext), Which typically vary from 0.1 to 10mM
(Reisenauer, 1966; Hawkesford and Miller, 2004).
Occasionally, much higher [K'] are observed
(Ramadan, 1998), while in some intensively culti-
vated areas such as rice fields of Southeast Asia,
the depletion of soil K™ threatens to reduce crop
yields (Dobermann and Cassman, 2002; Yang et al.,
2004). Other environmental stresses, such as metal
toxicity, salinity, and drought, are known to
adversely affect K™ uptake and transport by plants
(Schroeder et al., 1994; Amtmann et al., 2006;
Shabala and Cuin, 2008), and such stresses can
often be ameliorated by increased K* supply
(Cakmak, 2005). The link between K" and crop
production has been highlighted in two recent
reviews: one on the role of K" in reducing the
effects of pests and disease on plants (Amtmann
et al., 2008) and the other on the importance of K*
in the onset of sodium (Na*) toxicity (Shabala and
Cuin, 2008).

The extraction of K* from soil and its distribution
within the plant require the presence of mem-
brane-bound transport proteins. A large number of
such transporters have now been identified at the
molecular level, demonstrating the complex nature
of K* transport. The physiological roles of these
proteins in primary K" influx, efflux, compartmen-
tation, and transport within the plant have been
partially characterized (Gierth and Maser, 2007;
Lebaudy et al., 2007), while many putative K*
transporters and transport regulators are currently
under investigation. The present review will begin
with a synopsis of the functions of K*, then discuss
the known classes of K transporters and their
regulation, with attention to special topics such as
K*-use efficiency and root zonation. Throughout,
we shall assess some of the latest investigations
into K* transport at cellular and whole-plant levels.
It is our hope to generate new discussion for K*
transport research by bringing together important
advances in plant molecular biology and physiology.

Functions of K*

Potassium plays major biochemical and biophysi-
cal roles in plants. General maintenance of the

photosynthetic apparatus demands K*, and K"
deficiency reduces photosynthetic activity, chlor-
ophyll content, and translocation of fixed carbon
(Hartt, 1969; Pier and Berkowitz, 1987; Zhao et al.,
2001). Plant movements such as closing and open-
ing of stomata, leaf movements, and other plant
tropisms are driven by K*-generated turgor pres-
sure (Maathuis and Sanders, 1996a; Philippar et al.,
1999). The osmotic pressure brought about by K*
accumulation within cells is also used to drive
cellular and leaf expansion (Maathuis and Sanders,
1996a; Elumalai et al., 2002). K* is highly mobile
within plants, exhibiting long-distance cycling
between roots and shoots in the xylem and phloem.
This is most evident in the cotransport of K* with
nitrate (NO3) to shoots and its subsequent re-
translocation to roots with malate when plants are
supplied with NO3, and is also seen in the cotran-
sport of K* with amino acids in the xylem (Ben Zioni
et al., 1971; Jeschke et al., 1985). Recirculated K*
can be an important source of K' in roots,
particularly with NO3-grown plants, and phloem-
delivered K* from shoots may be a signal that
modulates K" influx into the root (Peuke and
Jeschke, 1993; White, 1997). The relatively high
permeability of plant cells to K* confers on the ion
the ability to impose short- and long-term mod-
ifications upon the electrical potential difference
across the plasma membrane (A¥py) that is
primarily established and maintained by the H*-
ATPase. This can be readily seen when changes in
the [K']ext result in permanent hyperpolarization
(upon reduction of K*) or depolarization (upon
increase in K') of A¥py (Pitman et al., 1970;
Cheeseman and Hanson, 1979; Kochian et al., 1989;
Maathuis and Sanders, 1996a; Rodriguez-Navarro,
2000). Notably, in some species such as rice (Oryza
sativa), or the halophyte Triglochin maritima,
ammonium (NH}), and sodium (respectively) can
also adjust AW¥py (Jefferies, 1973; Wang et al.,
1994). Nevertheless, in most plants A¥py is only
transiently modified by either ion (Higinbotham
et al., 1964; L’'Roy and Hendrix, 1980; Cheeseman,
1982; Cheeseman et al., 1985).

K" accumulates to considerable concentrations in
cytosolic and vacuolar compartments. The cytoso-
lic K" pool appears to be relatively stable, although
estimates of cytosolic K" concentration ([K']cyt) can
range widely, between 30 and 320 mM, tending to a
set point of around 100 mM (Walker et al., 1996).
This range, and the exact stringency of [K']cy
homeostasis, reflects, in part, some disagreement
arising from the use of different methods (see
Britto and Kronzucker, 2008). By contrast with the
cytosolic pool, the concentration of the vacuolar K*
pool has been found to vary greatly, between 10
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and 500 mM, depending on the plant examined and
the K" growth condition (Leigh and Wyn Jones,
1984; Marschner, 1995). A stable [K'] is consid-
ered necessary for optimal enzyme activity, and its
disruption may underlie ion toxicities such as
brought about by high sodium or ammonium
provision (Mills et al., 1985; Hajibagheri et al.,
1987, 1988; Speer and Kaiser, 1991; Walker
et al., 1996; Flowers and Hajibagheri, 2001; Carden
et al., 2003; Halperin and Lynch, 2003; Kronzucker
et al., 2003, 2006; Szczerba et al., 2006, 2008a).

High-affinity K* transport

As with most mineral nutrients, the primary
acquisition of K* from the external environment
follows a biphasic pattern, described as the sum of
two uptake mechanisms at the plasma membrane,
and distinguishable in terms of saturability, flux
capacity, differential sensitivity by physicochem-
ical treatments, and mechanism (Epstein and
Bloom, 2005; Gierth and Maser, 2007; Lebaudy
et al., 2007; Britto and Kronzucker, 2008). The
high-affinity transport system (HATS) is a saturable
system catalyzing the thermodynamically active
uptake of K" at low concentrations (<1mM). The
active influx of K* is thought to be coupled to the
passive influx of H" down its electrochemical
gradient, which is maintained by proton-pumping
ATPase complexes in the plasma membrane
(Cheeseman et al., 1980; Rodriguez-Navarro
et al., 1986; Kochian et al., 1989; Maathuis and
Sanders, 1994; Briskin and Gawienowski, 1996).
Despite some disagreement concerning the precise
stoichiometry of H*/K" symport, it is generally
accepted to be 1:1 (Maathuis and Sanders, 1994;
Maathuis et al. 1997), as has also been demon-
strated in bacterial (Bakker and Harold, 1980) and
fungal systems (Rodriguez-Navarro et al., 1986). In
plants, the K, value for HATS ranges from 13 to
130 uM, with a Vo of between 1.8 and nearly
150 umolg~"h~", depending on the experimental
system investigated (Epstein et al., 1963; Kochian
and Lucas, 1982, 1983; Wrona and Epstein, 1985;
Maathuis and Sanders, 1996a, b).

The magnitude of HATS-mediated K* influx has
been shown to be inversely correlated with tissue
K* content (Glass, 1976; Kochian and Lucas, 1982;
Siddiqi and Glass, 1986), although it is unclear how
plants interpret K* status and adjust transport rates
appropriately. HATS-mediated K" influx is also
severely reduced by NHZ provision (Scherer et al.,
1984; Vale et al., 1987, 1988a, b; Wang et al., 1996;
Spalding et al., 1999; Santa-Maria et al., 2000;

Banuelos et al., 2002; Kronzucker et al., 2003;
Martinez-Cordero et al., 2004; Szczerba et al.,
2006, 2008b; Nieves-Cordones et al., 2007), such
that reduced K* uptake and accumulation in the
presence of NH is a characteristic symptom of NH}
toxicity (Kirkby, 1968; Van Beusichem et al., 1988;
Peuke and Jeschke, 1993; Gerendas et al., 1997;
Hirsch et al., 1998; Britto and Kronzucker, 2002;
Martinez-Cordero et al., 2005). The mechanism by
which NH inhibits K* influx in the HATS range,
while not firmly established, may result from direct
competition between NH}; and K* for entry into
the cell (Vale et al., 1987; Wang et al., 1996;
White, 1996). Similarly, Na* has been shown to
suppress HATS-mediated K* influx, particularly at
millimolar [Na*]ex: (Cheeseman, 1982; Jeschke,
1982; Schachtman and Schroeder, 1994; Rubio
et al., 1995; Gassmann et al., 1996; Maathuis
et al., 1996; Santa-Maria et al., 1997; Martinez-
Cordero et al., 2005; Kronzucker et al., 2006, 2008;
Nieves-Cordones et al., 2007), although a few
studies suggest that Na* has only a weak effect
(Epstein, 1961; Epstein et al., 1963), or indeed may
stimulate HATS-mediated K* influx (Rubio et al.,
1995; Spalding et al., 1999). Conflicting informa-
tion on the effects of Na* may arise from differ-
ences in experimental systems and approaches
(e.g., between heterologous expression systems,
excised roots and intact plants, or between mea-
surements of unidirectional and net fluxes).
Several genes have been identified that appear
to encode HATS transporters. They are grouped into
four major families: HAK/KUP/KT (K*/H® sympor-
ters), HKT/TRK (K*/H" or K*/Na™ symporters), CPA
(cation/H" antiporters), and Shaker channels (to be
discussed below), with additional candidates found
in other (mostly channel-type) transport families.
With the exception of ion channels, these trans-
porters mediate active K" symport with H*
(Maathuis and Sanders, 1999; Rodriguez-Navarro,
2000; Maser et al., 2001; Gierth and Maser, 2007;
Grabov, 2007), with the majority of HATS-mediated
influx catalyzed by members of the HAK/KUP/KT
family (Figure 1), particularly under conditions of
K* starvation (Gierth and Maser, 2007). Initially
identified in Escherichia coli, this type of transpor-
ter was found to be significantly different from
previously identified bacterial TRK K* transporters
(Schleyer and Bakker, 1993). Homologous amino
acid sequences were subsequently identified in the
yeast Schwanniomyces occidentalis (Banuelos
et al., 1995) and in barley (Hordeum vwulgare,
Santa-Maria et al., 1997). Supporting the hypoth-
esis that HAK/KUP/KT functions in the acquisition
of K" at low [K']ext, K* starvation has been found to
promote HAK transcript abundance in a wide
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Figure 1. A summary of known and putative potassium transporters in the plant root cell. Abbreviations:
CNGC = cyclic nucleotide-gated channels; LCT1 = low-affinity cation transporter; TPK = tandem-pore K* channel;

CCC = cation/chloride cotransporter;

SKOR = stelar K" outward rectifier;

HKT = high-affinity K" transporter;

KORC = K* outward-rectifying channel; CPA = cation/H" antiporter; HAK/KUP/KT = high-affinity K symporter family;
KIRC = K* inward-rectifying channel; CHX = cation/H" exchanger; PmitoK,rp = ATP-sensitive plant mitochondrial K*
channel; NHX = Na*/H* exchanger; FV = fast-activating vacuolar channel; TPC = two-pore channel; SV = slow-

activating vacuolar channel; VK = vacuolar K* channel.

variety of plant systems, including barley, rice,
Arabidopsis thaliana, Capsicum annum, Mesem-
bryanthemum crystallinum, Solanum lycopersicum,
and Phragmites australis (Santa-Maria et al., 1997;
Banuelos et al., 2002; Su et al., 2002; Ahn et al.,
2004; Armengaud et al., 2004; Martinez-Cordero
et al., 2004; Shin and Schachtman, 2004; Gierth
et al., 2005; Nieves-Cordones et al., 2007; Takahashi
et al., 2007). Conversely, HAK transcription de-
creases or is eliminated under K'-replete condi-
tions. These findings help explain tracer studies
showing that HATS-mediated K* influx is reduced
with high K" provision, and increased with K*
starvation (Glass, 1976; Kochian and Lucas, 1982;
Siddiqi and Glass, 1986). Further corroboration
indicating that HAK/KUP/KT transporters mediate
HATS fluxes is found in studies showing that
transporter abundance and/or transport activity
are/is inhibited by Na® (Santa-Maria et al., 1997;
Quintero and Blatt, 1997; Fu and Luan, 1998; Su
et al., 2002; Martinez-Cordero et al., 2005; Nieves-
Cordones et al., 2007) and NH (Santa-Maria et al.,
2000; Bafuelos et al., 2002; Martinez-Cordero
et al., 2004, 2005; Vallejo et al., 2005; Nieves-
Cordones et al., 2007). Some evidence also suggests
that influx of Na® occurs via high-affinity K*
transporters (Santa-Maria et al., 1997; Takahashi

et al., 2007), in support of earlier physiological
studies (see above). However, it should be noted
that AtKUP transporters have not yet been loca-
lized to the plasma membrane. A closely related
transporter, OsHAK10, has been localized to the
tonoplast (Banuelos et al., 2002), supporting the
idea that HAK/KUP/KT transporters mobilize K*
from the vacuole under K* deficiency (Rodriguez-
Navarro and Rubio, 2006), a role also suggested by a
recent proteomics study that found five members
of the KUP family in tonoplast-enriched Arabidopsis
membrane fractions (Whiteman et al., 2008).

Localization studies have shown that HAK/KUP/
KT transporters are expressed throughout the
plant, including in floral, foliar, and stem tissue
(Kim et al., 1998; Rubio et al., 2000; Banuelos
et al., 2002; Su et al., 2002). This indicates that this
family does not simply mediate primary K" uptake
from soil. For instance, a mutation in the AtKT2/
AtKUP2 gene was shown to alter turgor-driven cell
expansion in the shoot (Elumalai et al., 2002).

An interesting outcome of the molecular analyses
of transport proteins is that the distinction
between HATS and LATS is not as rigid as previously
thought. For example, AtKUP1, from A. thaliana,
appears to mediate K* uptake at both low and
high [K']exc in yeast and Arabidopsis-suspension
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cells (Fu and Luan, 1998; Kim et al., 1998),
although some of the evidence is problematic (very
low fluxes in wild-type and transformant, lack of
conformity to kinetic models, and the background
presence of endogenous transporters; Rodriguez-
Navarro, 2000). Nevertheless, AtKUP1 displays
properties of both HAK/KUP/KT family members,
and plant K" Shaker channels (described below),
including the presence of 12 transmembrane-span-
ning domains, characteristic of HAK/KUP/KT trans-
porters, and an amino acid sequence of IYGD
(isoleucine-tyrosine-glycine-aspartate), similar to
the GYGD/E (glycine-tyrosine-glycine-aspartate/
glutamate) motif found in the pore domain of K*
channels (Chérel, 2004). In addition, AtKUP1 shows
sensitivity both to Na* and to the channel inhibitors
tetraethylammonium (TEA®), cesium (Cs*), and
barium (Ba%**, Fu and Luan, 1998). Another A.
thaliana transporter, AtKT2/AtKUP2, rescued yeast
mutants defective in K" uptake when supplied with
>2.5mM K*, while yeast growth was substantially
reduced when [K*]ex: Was reduced to 1 mM (Quin-
tero and Blatt, 1997), suggesting that not all
members of the HAK/KUP/KT family operate in
the high-affinity range.

Unlike HAK/KUP/KT, the role of the HKT/TRK
family (Figure 1) in mediating high-affinity K*
transport in plants has been questioned since its
initial characterization by Schachtman and Schroeder
(1994). Hailed as the first identification of a gene
encoding high-affinity K" transport, HKT1 was
isolated from a cDNA library derived from K-
deprived wheat (Triticum aestivum). HKT1 showed
sequence similarity with other TRK-type K" trans-
porters (i.e., from vyeast), and functionally
complemented vyeast deficient in K' uptake
(Schachtman and Schroeder, 1994). However, K*
transport via HKT varies with the expression system
used to test its function, is strongly influenced by
the presence of Na®, and, most importantly,
depends on the member of the HKT gene family
under investigation. Studies using Xenopus oocytes
and yeast have indicated that one role for HKT
family members may be that of a K*/Na* symporter
at low [Na']ex:, and as a Na*-specific transporter at
higher [Na"]ex: (Rubio et al., 1995; Gassmann et al.,
1996; Golldack et al., 2002; Garciadeblas et al.,
2003; Haro et al., 2005). However, tests for coupled
K*/Na® symport in intact plants have shown that
micromolar [Na*]ex: stimulates neither K* uptake
nor plant growth (Maathuis et al., 1996; Box and
Schachtman, 2000). Other evidence supports a
limited role for the HKT family in K* uptake, at
least under K*-starved conditions (Uozumi et al.,
2000; Horie et al., 2001; Garciadeblas et al., 2003;
Haro et al., 2005), but these transporters may be

much more important in Na® uptake by plants
(Uozumi et al., 2000; Horie et al., 2001; Garciadeblas
et al., 2003; Kader et al., 2006; Horie et al., 2007)
and for its internal allocation, particularly in its
removal from the xylem, and circulation through
the phloem (Fairbairn et al., 2000; Berthomieu
et al., 2003; Garciadeblas et al., 2003; Su et al.,
2003; Rus et al., 2004, 2006; Sunarpi et al., 2005;
Kader et al., 2006; Davenport et al., 2007). The
HKT family has served as an important demonstra-
tion of the diversity and complexity of ion transport
physiology, and sounds a note of caution in the
interpretation of results from heterologous expres-
sion systems and their applicability in planta.

The plant cation, proton antiporter (CPA) super-
family has also been implicated in the mediation of
K* uptake, despite functional analyses describing
cation antiporters more as regulators of cellular ion
homeostasis by expulsion of stress-inducing ions
such as Na* (Pardo et al., 2006; Apse and Blumwald,
2007; Figure 1). Indeed, the most well-character-
ized CPA transporters are members of the CPA1
family, which predominantly mediate Na*/H" ex-
change, either intracellularly or across the plasma
membrane (Brett et al., 2005). However, one such
member, NHX1, has been shown to also mediate K*
transport in leaf tonoplast vesicles from tomato
plants (S. lycopersicum, Zhang and Blumwald,
2001), while Venema et al. (2003) characterized a
novel NHX gene from tomato plants (LeNHX2),
closely related to A. thaliana NHX5 (Yokoi et al.,
2002), that encodes an intracellular K*/H" exchan-
ger. LeNHX2 has been shown to affect plant growth,
salt tolerance, and K* compartmentation, and
appears to be localized to small intracellular
vesicles (Rodriguez-Rosales et al., 2008).

More speculatively, some members of the CPA2
family may encode K'/H* exchangers. KHA1 from
Saccharomyces cerevisiae belongs to this family
and appears to mediate an intracellular K* flux
(Maresova and Sychrova, 2005, 2006), while a
number of closely related transporters have been
identified in plants by structural homology
(Sze et al., 2004). Cellier et al. (2004) demon-
strated increased transcript abundance of a gene
(AtCHX17) encoding a putative K*/H" antiporter in
response to K" starvation and Na* stress. While the
group hypothesized that the antiporter may func-
tion in K™ acquisition, it is difficult to envisage how
it would function in energetic terms, since both K*
uptake and H" extrusion would likely be against the
respective electrochemical gradients for each ion.
Shin and Schachtman (2004) also observed transient
transcriptional up-regulation by K* deprivation of
the KEA5 gene, which putatively encodes another
K* antiporter in the CPA2 family. Like KHA1, other
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members of this family may operate intracellularly,
including AtCHX23 and AtCHX20, which have been
located in the chloroplast envelope (Song et al.,
2004) and endosomal membranes (Padmanaban
et al., 2007), respectively. While results suggest
that CHX and KEA transporters participate in
cellular K* homeostasis, determination of their
precise roles needs further attention.

Low-affinity K* transport

The low-affinity transport system (LATS) for K*
predominantly functions at high external concen-
trations (generally above 1 mM), and is generally
considered to be channel-mediated (Epstein et al.,
1963; Kochian and Lucas, 1982; Kochian et al.,
1985; Gassmann and Schroeder, 1994; Maathuis and
Sanders, 1995; White and Lemtiri-Chlieh, 1995;
White, 1996; Hirsch et al., 1998), largely because
of its high flux capacity and sensitivity to channel
inhibitors. Pharmacological agents that have been
extensively tested on channel-mediated transport
systems in animals (Hille, 1992), including TEA®,
Cs*, Ba®*, calcium (Ca**), lanthanum (La**), and
quinidine, have powerful effects on plant systems,
demonstrating strong similarities between the two
kingdoms (Leonard et al., 1975; Ketchum and
Poole, 1990; Blatt, 1992; Wegner et al., 1994;
Roberts and Tester, 1995; White and Lemtiri-Chlieh,
1995; Nocito et al., 2002; also see below).

Unlike HATS, uptake in the LATS range is
thermodynamically passive (Maathuis and Sanders,
1996a). However, a consequence of both the
passive uptake of K" and its active uptake via
H*/K* symport is an electrogenic entry of net
positive charge, which requires the active removal
of protons to maintain electrical neutrality (see
Gerendas and Schurr, 1999; Rodriguez-Navarro,
2000). Were neutralization not to occur, K* influx
(e.g., with channel-mediated rates between
1x10° and 1x 10%ionss~" protein™'; Maathuis
et al., 1997) could cause a precipitous depolariza-
tion of the plasma membrane and the loss of its
normal electrical properties (Britto and Kronzuck-
er, 2006). Therefore, a distinction between K" HATS
and LATS, based upon energy requirement, must
include the more subtle distinction between the
coupling of K" and H" influx, which drives K* entry
against an electrochemical potential gradient in
the case of HATS, and the expulsion of H" following
active or passive K* entry for charge balancing, in
the case of both HATS and LATS.

LATS-mediated K* influx can be further distin-
guished from HATS by its lack of down-regulation at
high external [K'], despite both increased tissue K*

levels (Szczerba et al., 2006), and a progressively
depolarized plasma membrane (Pitman et al.,
1970; Cheeseman and Hanson, 1979; Kochian
et al., 1989; Maathuis and Sanders, 1996a). In
addition, the linear increase of the flux often
observed in response to K" supply, under steady-
state (Szczerba et al., 2006) and non-steady-state
conditions (Kochian and Lucas, 1982), sharply
contrasts with the characteristically saturable
response in the HATS range. However, it should be
noted that LATS has also been described by
Michaelis-Menten kinetics, depending on the ex-
perimental approach used, with “Ky” and “Vux"
values being consistently high when saturation is
observed (Epstein et al., 1963; Kochian and Lucas,
1982, 1983; Kochian et al., 1985; Wrona and
Epstein, 1985; Fu and Luan, 1998). The identifica-
tion of ion channels as likely mediators of
LATS transport has removed much of the disagree-
ment concerning the uniqueness of the LATS
mechanism, despite recent discoveries of ion
transporters with dual-affinity characteristics
(Hirsch et al., 1998; Fu and Luan, 1998; Liu et al.,
1999; see above).

LATS influx is also NHz-insensitive, in contrast to
HATS (Spalding et al., 1999; Santa-Maria et al.,
2000; Kronzucker et al., 2003; Szczerba et al.,
2006), to the extent that increasing [K*]ey: into the
LATS-dominated range can alleviate the symptoms
of NH toxicity that appear at lower [K"]ex: (Mengel
et al., 1976; Cao et al., 1993; Gerendas et al.,
1995; Santa-Maria et al., 2000; Kronzucker et al.,
2003; Szczerba et al., 2006, 2008a). Because K* and
NHZ are univalent cations with similar hydrated
atomic radii, it has been suggested that they share
a common transporter, and that K" may alleviate
NHZ toxicity by competing with NHZ at the transport
level (Kielland, 1937; Wang et al., 1996; White,
1996; Nielsen and Schjoerring, 1998; Hess et al.,
2006). Recent "*NH} work in barley has confirmed
the K*-dependent reduction of toxic NHj fluxes
(Szczerba et al., 2008a).

In contrast to NH}, Na® suppresses K" influx in
both LATS and HATS ranges (Rains and Epstein,
1967; Benlloch et al., 1994; Flowers and Hajibagheri,
2001; Fuchs et al., 2005; Kronzucker et al., 2006,
2008; Wang et al., 2007). The reasons for this are
unclear, but Na* may directly inhibit K* uptake,
possibly because Na* itself utilizes K* LATS trans-
porters (Wang et al., 2007), or because Na* stress
brings about decreased expression of K'-specific
LATS transporters (Golldack et al., 2003).

An impressive array of ion channels has been
characterized in plant systems by use of multiple
experimental approaches. Electrophysiological
analyses of guard cells, xylem parenchyma cells,
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and root protoplasts have revealed the presence of
K*-specific channels that are inwardly rectifying
and activated by membrane hyperpolarization
(Lebaudy et al., 2007). Expression studies comple-
menting yeast mutants deficient in K" uptake
yielded the genetic sequence of the first two
inwardly rectifying K* channels discovered in
plants, KAT1 (expressed in guard cells) and AKT1
(expressed predominantly in roots, with other AKT
isoforms found throughout the plant; Anderson
et al., 1992; Sentenac et al., 1992; Lebaudy
et al., 2007; Figure 1). Both KAT1 and AKT1, as
well as many of their homologs, share numerous
genetic and physiological features with animal
Shaker-type K* transporters, including six trans-
membrane domains; a voltage sensor domain
located at the fourth transmembrane domain and
rich in basic amino acids; a pore region located
between the fifth and sixth transmembrane do-
mains, containing the highly conserved GYGD amino
acid sequence; and a putative cyclic-nucleotide-
binding domain located near the C-terminus
(Maathuis et al., 1997; Czempinski et al., 1999;
Zimmermann and Sentenac, 1999; Chérel, 2004;
Gambale and Uozumi, 2006; Gierth and Maser,
2007; Lebaudy et al., 2007). They are also inhibited
by K*-channel-specific inhibitors such as TEA*, Ba**,
and La** (Wegner et al., 1994; Bertl et al., 1995;
Miiller-Rober et al., 1995; Véry et al., 1995; Lewis
and Spalding, 1998; Nielsen and Schjoerring, 1998).
In addition, Shaker K" channels in both animal and
plant systems have been shown to assemble in the
plasma membrane as tetramers (MacKinnon, 1991;
Daram et al., 1997). Unlike high-affinity K* trans-
porters, AKT1 transcript levels do not respond to K*
starvation in most systems, consistent with its
mediation of K" uptake at high external [K]
(Lagarde et al., 1996; Su et al., 2001; Pilot et al.,
2003). One notable exception was found by
Buschmann et al. (2000), who showed an increase
in AKT1 transcript abundance and K* currents in K*-
starved wheat, suggesting that K channels in
wheat may play a greater role in K" scavenging
than in other species.

Electrophysiological analyses showing the NHj-
insensitivity of specific Shaker-type K* channels in
plants confirm previous physiological studies (Bertl
et al., 1995; Miller-Rober et al., 1995; White,
1996; Hirsch et al., 1998; Moroni et al., 1998;
Spalding et al., 1999; Su et al., 2005). In one
compelling study, differential sensitivity to NH} in
HATS and LATS was exploited to demonstrate the
ability of AKT1 to mediate K* transport in the high-
affinity range: after inhibition of HATS with NH in
A. thaliana, akt1 mutants grew very poorly at low
[K*]ext, While wild-type seedlings were much less

affected, indicating that AKT1 could scavenge K" at
concentrations as low as 10 pM (Hirsch et al., 1998;
Spalding et al., 1999).

Less well understood is the role of K* channels in
mediating Na* fluxes, and the effect of Na* stress
upon K* channel activity. It has been demonstrated
that increasing extracellular Na* can reduce K*
channel transcript abundance in A. thaliana,
M. crystallinum, and O. sativa (Su et al., 2001;
Golldack et al., 2003; Pilot et al., 2003), and it has
been suggested that AKT1 mediates Na* fluxes
(Golldack et al., 2003; Obata et al., 2007; Wang
et al., 2007). Interestingly, Qi and Spalding (2004)
found that a cytosolic [Na*] of only 10mM com-
pletely inhibited AKT1-mediated inward currents in
Arabidopsis protoplasts examined using whole-cell
patch-clamping. Essah et al. (2003), however,
found no difference in Na® accumulation in
A. thaliana akt1 mutants as compared with wild-
type seedlings, and, similarly, Obata et al. (2007)
found either the same, or lower, Na* content in
yeast and rice cells expressing OsSAKT1 (overexpres-
sing, in the case of rice), relative to untransformed
cells. Buschmann et al. (2000), in a patch-clamp
study with AKT1 from wheat (TaAKT1), concluded
that K" and Na* currents are not mediated by the
same transporter. Kronzucker et al. (2006, 2008)
found that an approximately 400-fold range in
[K]lext had little effect on Na® influx in barley
seedlings grown with 100mM [Na']ex, While, by
contrast, Na* stress profoundly inhibited K* uptake.
These results suggest that under certain circum-
stances Na* may utilize K* channels, but this should
not be taken as a general rule.

Other important K* channels within
plants

In addition to mediating primary K uptake,
channels play an important role in long-distance
K* fluxes via the vasculature. Early work on
channels in root xylem parenchyma cells showed
TEA" and La** inhibition (Wegner et al., 1994), and
subsequent investigations attributed a component
of xylem K' loading to the activity of SKOR, a
Shaker-type efflux channel found in stelar parench-
yma cells (Gaymard et al., 1998; Figure 1). SKOR-
deficient A. thaliana mutants showed a 50%
reduction in shoot K" content, while root content
was unaffected (Gaymard et al., 1998). High NH;
reduces K* flux to the shoot, and shoot K* content,
by as much as 90% (Kronzucker et al., 2003),
suggesting that xylem loading, possibly mediated
by SKOR and other transporters, is sensitive to NHZ
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(Santa-Maria et al., 2000; Kronzucker et al., 2003;
Szczerba et al., 2006, 2008b). Similarly, phloem K*
loading and unloading may be mediated by another
Shaker-type channel, AKT2, which was identified in
phloem cells using B-glucuronidase (GUS) reporting
and in situ hybridization (Marten et al., 1999;
Lacombe et al., 2000; Deeken et al., 2000). K*
starvation increases transcript abundance of SKOR
and AKT2, while abscisic acid (ABA) shows opposing
effects on the two genes, reducing SKOR mRNA
abundance, while increasing that of AKT2 (Marten
et al., 1999; Lacombe et al., 2000, Deeken et al.,
2000, 2002; Pilot et al., 2001, 2003). This dual
effect is consistent with the role of ABA during
water stress: reduced K* transport to the shoots,
and increased delivery of K* to the roots via the
phloem, may be critical in increasing the osmotic
strength of roots deprived of water.

In contrast to the inward flux of K through KAT1
in guard cells, the rapid removal of K during
stomatal closure has been attributed in large part
to the GORK Shaker channel (Ache et al., 2000).
Indeed, gork gene mutations or disruptions in
the protein-mediated regulation of the GORK
channel have been shown to disrupt water rela-
tions in plants (Hosy et al., 2003; Becker et al.,
2003).

Several other channel types have been shown to
transport K* in plants, including the tandem-pore
K* (TPK) channels (Czempinski et al., 1999;
Zimmermann and Sentenac, 1999; Maser et al.,
2001, 2002; Ashley et al., 2006; Lebaudy et al.,
2007). TPK transporters, found in plant, animal,
and fungal systems, have between two and eight
transmembrane domains, with either an individual
pore or, more frequently, two pores, separated by
two transmembrane domains, each containing
a GYGD sequence, similar to Shaker channels
(Zimmermann and Sentenac, 1999; Maser et al.,
2001, 2002; Czempinski et al., 1999; Ashley et al.,
2006; Lebaudy et al., 2007). Unlike with Shaker-
type channels, however, TPK subunits do not
appear to form heteromeric proteins (Voelker et
al., 2006). TPK channels have been identified in
roots, leaves, and flowers, localizing to the
tonoplast or plasma membrane (Figure 1), with
regulatory sites for Ca?* binding and phosphoryla-
tion (Czempinski et al., 1997, 2002; Moshelion et
al., 2002; Latz et al., 2007). Although a number of
putative plant TPK channels have been identified,
in planta function has only been determined for
two members: AtTPK4, located at the plasma
membrane, which participates in pollen and pol-
len-tube K* transport (Becker et al., 2004); and
TPK1, a tonoplast-localized channel that is Ca®'-
activated, pH-sensitive, and voltage-insensitive

(Gobert et al., 2007). Based on these character-
istics, TPK1 has been suggested to be the VK
(vacuolar K*) channel, previously identified by
electrophysiological means (Ward and Schroeder,
1994; Allen and Sanders, 1996; Bihler et al., 2005).

Although not a TPK channel, another two-pore
channel (TPC1) having Shaker family-type structure
with 12, rather than six, membrane-spanning
domains, and showing Ca®>* and K' transport
capabilities, has been identified (Furuichi et al.,
2001; Peiter et al., 2005). Electrophysiological
analysis of this tonoplast-localized channel (Figure 1)
in protoplasts showed ion conductances identical to
those previously attributed to slow vacuolar (SV)
channels (Hedrich and Neher, 1987; Ward and
Schroeder, 1994; Allen and Sanders, 1995; Peiter
et al., 2005). Moreover, A. thaliana mutants either
overexpressing TPC1, or having a TPC1 knockout,
exhibited SV-type channel conductances that were,
respectively, either enhanced or silenced (Peiter
et al., 2005). Despite a possible molecular identity
for SV channels, high abundance in the tonoplast,
and considerable interest in its role, no in planta
function has yet been assigned to it. However, it
has been suggested to mediate K* fluxes into and
out of the vacuole (Allen and Sanders, 1996;
Ivashikina and Hedrich, 2005), as well as Ca**
fluxes from the vacuole to the cytosol (Pottosin and
Schonknecht, 2007).

Cyclic-nucleotide gated channels (CNGCs, Maser
et al., 2001, 2002; Trewavas et al., 2002;
Ashley et al., 2006), like TPK channels, comprise
an important emerging class of K* transporter
(Figure 1). CNGCs share structural homology with
Shaker channels, having six transmembrane do-
mains, with a pore domain located between the
fifth and sixth transmembrane units (Talke et al.,
2003). CNGCs and some Shaker channels also share
the characteristic of activation by cyclic nucleo-
tides (Véry and Sentenac, 2003). The cyclic-
nucleotide-binding domain for CNGCs is located in
the carboxyl terminus of the protein, along with a
calmodulin-binding domain (Talke et al., 2003).
However, unlike Shaker channels, CNGCs do not
have a consistent pore sequence comparable to
GYGD (Talke et al., 2003). Of the identified CNGCs,
two have been shown to have equal K* and Na*
conductance (AtCNGC1 and AtCNGC4; Balague
et al., 2003; Hua et al., 2003), and a third has
been implicated in K* uptake (AtCNGC10, Borsics
et al., 2007). However, it has been suggested that
CNGCs mainly function in mediating Na*, Ca®*, or
nonselective cation transport in plants, a role that
may also describe TPC1 (Maathuis and Sanders,
2001; Demidchik et al., 2002; Demidchik and
Maathuis, 2007).
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Regulatory mechanisms

A number of regulatory mechanisms have been
identified for K" transporters, particularly those of
the Shaker family. In patch-clamp studies, Schroeder
and Fang (1991) and Su et al. (2005) observed that
decreased K* supply reduced current conductance
and activation of guard cell K channels, and
concluded that these channels were inactivated
at micromolar [K*], in contrast to evidence that
some Shaker channels continue to mediate K*
currents at similarly low [K']ex: (Hirsch et al.,
1998; Bruggemann et al., 1999). In this case, low
[K']ext Was suggested to trigger a conformational
change in the channel’s pore region, essentially
reducing its diameter and conductivity (Zhou et al.,
2001; Hertel et al., 2005; Su et al., 2005). However,
pore size alone does not determine channel
activity, only the likelihood of permeability for an
ion; other channel properties, such as ion-binding
affinity and activation-sensor modulation, also play
key roles (Zhou and MacKinnon, 2004; Lockless
et al., 2007).

Ca®" signaling and protein phosphorylation may
also be central to ion sensing in plants. As
mentioned previously, H*-ATPase activity estab-
lishes electrical and pH gradients across the plasma
membrane, which coexist with ion gradients,
notably that of K*. As changes occur in [K']ext,
the K" and H* gradients will adjust appropriately,
unless the shift in [K"]ex: is severe, when another
mechanism, possibly involving a Ca®* signal cas-

cade, may be elicited. This secondary reaction may
recruit other molecules, such as calmodulin, to
activate or deactivate a transporter, or initiate a
signaling cascade that will ultimately modify gene
transcription. The plasma membrane will now have
a new complement of transporters, establishing a
new steady-state in response to a changed external
K* environment. Recently, a sophisticated Ca**
signal transduction pathway, corresponding to the
above hypothesis, and describing a specific regula-
tory mechanism for AKT1, was elucidated (Figure 2):
the ankyrin domain of AKT1 interacts with a protein
kinase (CIPK23) that activates AKT1 by phosphor-
ylation, and is targeted by calcineurin B-like
calcium sensors (CBL1 and CBL9), which are in turn
activated by Ca®* (Li et al., 2006; Xu et al., 2006;
Lee et al., 2007). The Ca?" signal is initiated by an
unknown low K* sensor. AKT1 channel-inactivation
can be achieved by dephosphorylation, via a 2C-
type protein phosphatase (Lee et al., 2007). cipk23
mutants of A. thaliana show impaired growth under
low K conditions (Cheong et al., 2007), further
suggesting that K* channels may have an important
role in K* scavenging (Hirsch et al., 1998; Busch-
mann et al., 2000). Previously, the function of the
ankyrin domain of AKT1 was unknown but postu-
lated to interact with the cytoskeleton, as de-
scribed for animal systems (Davies et al., 1991;
Bennett, 1992; Mills and Mandel, 1994).

Ca®* may also regulate plant K* channels by
interacting with guanine nucleotide-binding pro-
teins (‘G proteins’’; Kelly et al., 1995; Wegner and

AKT1

Plasma membrane

Figure 2. Activation mechanism for AKT1 under conditions of low [K*]ex. This diagram illustrates how recent work has
delineated fine details of K* flux regulation. For details, see text. Based upon Lee et al., 2007. CBL = calcineurin B-like
calcium sensor; CIPK = CBL-interacting protein kinase; Ankyrin = conserved region on C-terminus of Shaker family

channels.
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De Boer, 1997; Wang et al., 2001). While G proteins
are known to regulate animal K* channels, there is
scant information about their role in plant K*
transport (Assmann, 2002). However, a role for G
proteins in the control of stomatal aperture via
modulation of K* channel currents has been
suggested (Fan et al 2008).

Another class of proteins known to interact with
K* channels are the 14-3-3 proteins, which have a
wide range of functions in both plants and animals
(Mackintosh, 2004), including regulation of high-
affinity transporters such as the H*-ATPase (De
Boer, 2002). 14-3-3 proteins regulate K" channels
intracellularly (van den Wijngaard et al., 2001; Latz
et al., 2007), and at the plasma membrane
(Saalbach et al., 1997; van den Wijngaard et al.,
2005), and recent evidence demonstrates their role
in modifying the recruitment of K* channels to the
plasma membrane (Sottocornola et al., 2008).

Recently, a novel protein, OsARP, was identified
in rice, and found to regulate tonoplast transport,
stimulating Na* accumulation when overexpressed
in tobacco (Uddin et al., 2008). Similar sequences
can be found in a number of plants including
A. thaliana, Beta procumbens, Picea sitchensis,
Populus trichocarpa, and Vitis vinifera. While it is
unclear how this protein works, and whether it
plays a role in K" compartmentation, this discovery
indicates that further investigation into protein-
protein interactions of plant transporters will yield
interesting and important results.

Characteristics of Shaker channels may also be
modified via the variable composition of hetero-
meric complexes, as suggested by the indiscrimi-
nate, in vivo assembly of functional aggregates of
heterogeneous channel subunits derived from dif-
ferent plant organs (e.g., roots and shoots), or even
different plant species (e.g., A. thaliana and
S. tuberosum; Dreyer et al., 1997; Baizabal-Aguirre
et al., 1999; Pilot et al., 2001, 2003; Reintanz
et al., 2002; Xicluna et al., 2007; Bregante et al.,
2008). Distinct heteromeric channels vary in cur-
rent conductances and sensitivities to H*, Cs*, and
Ca%*, reflecting unique subunit combinations
(Dreyer et al., 1997; Baizabal-Aguirre et al.,
1999; Reintanz et al., 2002; Xicluna et al., 2007).
While the only in planta example of this type of
regulation has been observed in protoplasts with
heteromers composed of AtKC1 and AKT1 subunits
(Dreyer et al., 1997), such a feature of Shaker
channels may provide a mechanism for acclimation
to abiotic stress or rapidly changing environmental
conditions, via assembly of novel transporter
complexes.

A relatively new research area focuses on the
role of reactive oxygen species (ROS) in signal

mediation. Shin and Schachtman (2004) found that
K* deficiency leads to H,0, release, which induces
the expression of genes, such as AtHAKS5, encoding
K* transporters. H,0, pretreatment of seeds has
also been shown to increase Na® tolerance in
wheat; under Na® stress, H,0,-treated plants had
greater K* content than controls (Wahid et al.,
2007). Interestingly, runaway ROS production may
be curtailed via the ROS-dependent activation of
the ATP-sensitive plant mitochondrial K* channel
(PmitoKp), located in the inner mitochondrial
membrane (Pastore et al., 2007). Activation of this
channel catalyzes K* transport into the matrix, and
may reduce cellular redox stress by dissipating the
membrane potential and discharging reducing
equivalents.

K* efflux and K*-use efficiency

Improvement of plant nutrient use efficiency,
including that of K*, is an agronomically important
research area (Lea and Azevedo, 2007; Gerendas
et al., 2008; Jia et al., 2008). Of particular interest
is a plant’s ability to maximize K* uptake, by
increasing influx, decreasing efflux, or both. K*
influx and efflux can both increase substantially
with K* provision (Le Bot et al., 1998; Szczerba
et al., 2006), resulting in a condition of futile
cycling that may have toxic consequences (Britto
and Kronzucker, 2006). One such consequence is
the substantial energy required for the active
removal of K under high [K']ex, a “leak-pump”
condition similar to what is observed for Na* under
NaCl stress (Szczerba et al., 2006, 2008a). Thus,
the investigation of K* efflux is an essential area of
practical importance.

Despite functional characterization of root K*
efflux, including the electrophysiological identifi-
cation of outward-rectifying K* currents from root
hairs and from cortical and xylem parenchyma cells
(Ketchum et al., 1989; Schachtman et al., 1991;
Wegner and De Boer, 1997), little is known about
the molecular identity of these transporters. Two
members of the Shaker family have been identified
as participating in outward-rectifying currents:
GORK, in root hairs, and SKOR, in the stele
(Gaymard et al., 1998; Ivashikina et al., 2001;
Becker et al., 2003), while the identity of cortical
K* efflux channels is an open question.

Also as yet unaddressed at the molecular level is
the identity of the transporter(s) mediating K*
efflux against its electrochemical potential gradi-
ent, at millimolar [K*]ex: (Szczerba et al., 2006).
Candidates for this role are likely to come from the
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CPA superfamily, such as a CHX transporter, and/or
K* efflux may be mediated by the Na* pump, SOS1.
Although it has been claimed that SOS1 discrimi-
nates strongly against K* in favor of Na® (Pardo
et al., 2006), unlike the closely related tonoplast
Na*/H* exchanger NHX1, this point has not been
satisfactorily demonstrated. Studies by Quintero et
al. (2002) and Shi et al. (2002) showed that sos
mutants had altered K™ content or uptake, but did
not demonstrate a direct role for SOS1 in K*
transport. By contrast, both Zhang and Blumwald
(2001) and Venema et al. (2002) showed that the
NHX1 protein can mediate Na* or K* transport, with
similar kinetics. Moreover, Gaxiola et al. (1999)
showed that K* can stimulate NHX expression, and
Venema et al. (2003) demonstrated that LeNHX2
from tomato discriminates in favor of K* over Na™.

While much more work is necessary to determine
the molecular identities of outwardly directed K*
transporters in the plasma membrane, this work
may prove beneficial in reducing fertilizer usage for
economic and environmental reasons. K*-use effi-
ciency is a key agronomic measurement, and it may
be critical to maximize cellular K" use efficiency
before other gains can be made at the whole-plant
level.

K* transport and root zonation

An interesting aspect of K transport is the
relative contribution, and localization, of HATS
and LATS across the variety of soil conditions
encountered by plant roots. Kochian and Lucas
(1983) identified the root periphery as HATS-
enriched, while the cortex became more important
under conditions of greater K provision. This view
has gained some molecular support, in that
expression of the high-affinity HAK transporter
was found to be greater in the root epidermis than
in the cortex (Su et al., 2002; Gierth et al., 2005),
although this is a species-specific pattern (Fulgenzi
et al., 2008). AKT1, by contrast, is expressed
throughout the root, in both cortical and epidermal
layers (Su et al., 2001; Golldack et al., 2003).
Another member of the Shaker family, AtKC1,
which forms functional channels only in association
with AKT1, is restricted to the root epidermis
(Ivashikina et al., 2001; Pilot et al., 2003). Thus,
the expression of AKT1 represents a pattern that
supports both high and low-affinity transport,
consistent with its ability to transport K* under
both HATS and LATS conditions (Hirsch et al., 1998;
Buschmann et al., 2000).

Longitudinally, a different localization pattern
can be seen. AKT1 has been found in root apical

cells, and in the remainder of the root (Hirsch
et al., 1998; Vallejo et al., 2005), while, by
contrast, HAK transcripts in barley were found to
be present in high abundance only above the first
10 mm from the root tip (the area already occupied
by AKT1, Vallejo et al., 2005). Unfortunately,
information describing longitudinal expression pat-
terns of other K* transporters is lacking. While
broad tissue localization to “root” or ‘“shoot’” can
be found, transport candidates such as LCT1 or
CNGCs must also be mapped along the root axis to
more fully assess their functional roles.

The contribution of AKT1 to K* transport under
various K* conditions remains a topic of interest. It
has been claimed that AKT1 may account for
55-63% of K" uptake under conditions of low
[K'lext (Spalding et al., 1999), even though only a
small fraction of cells may participate in this. This
is because a very hyperpolarized membrane is
necessary to ensure that the electrochemical
gradient is adequate for passive K* uptake (Hirsch
et al., 1998). It remains to be demonstrated how
much of the root is involved in K* uptake,
particularly under these conditions of low K*. One
suggestion is that AKT1 is most important under
conditions of NH supply (Rodriguez-Navarro and
Rubio, 2006), implicating a greater role of the root
tip under such conditions. Ultimately, it may be
found that the root is divided into functional
segments specializing in different mechanisms of
K* transport, with each segment’s importance
depending on external [K] and on the presence
of potentially toxic ions.

Concluding remarks

Understanding the diversity of K transporters in
plants can be a daunting task, particularly as new
evidence increases the variety of known K* uptake
and efflux mechanisms. From the initial description
of K" uptake as the two systems, HATS and LATS, to
the diversity of K* transporters that have now been
identified at the molecular level, our understanding
of K* transport has grown tremendously. However,
several key questions remain unanswered. It is
clear that there is redundancy in the K transport
machinery of plants, but an integrated picture of
how these transporters cooperate is still incom-
plete. It also remains unclear how energy is
conserved to mediate K* transport, although recent
investigations have shown that, in addition to H*-
or Na*-coupled K" transport, plants possess
cation-chloride cotransporters (CCCs), such as
found in animals (Colmenero-Flores et al., 2007).
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It may also emerge that the regulation of K*
transport in plants is closely associated with water
transport, a finding recently discovered in virus—
host interactions (Gazzarrini et al., 2006). Such
investigations may lead to new insights concerning
the interactions between K* and NH; or Na*, ions
that have been shown to inhibit K* uptake or bring
about K* loss (Rubio et al., 1995; Shabala and Cuin,
2008; Szczerba et al., 2008b). However, at a more
basic level, it still is not understood how K* sensing
occurs in plants, nor what may be the preliminary
signals initiating the downstream cascades that
activate K* transport. However, a recent study by
Nieves-Cordones et al. (2008) found that changes in
A¥py could affect the gene expression of a K*
transporter, supporting the hypothesis described
above.

It is evident that further studies, at both molecular
and whole-plant levels, are needed to help unravel
the matrix of K" transporters, and the signals and
regulators that affect their activities. If goals of
higher potassium-use efficiency are to be realized, a
variety of approaches will be necessary to more
adequately comprehend the complexity of K* trans-
port. It is clear that investigations focusing on K*
transport are as critical today as they were nearly 50
years ago, when the dual-pattern of K* uptake was
initially characterized by Epstein et al. (1963).
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