
Letters

In defence of the selective
transport and role of silicon in
plants

A response to Exley & Guerriero (2019) ‘A reappraisal
of biological silicification in plants?’

With interest, we read the Letter by Exley & Guerriero (2019; in
this issue of New Phytologist, pp. 511–513) ‘A reappraisal of
biological silicification in plants?’ in response to our recent Tansley
review on the biological roles of silicon (Si) (Coskun et al., 2019).

As stated in our article’s Conclusion, ‘our aim is to stimulate
critical thinking and positive advances towards a better under-
standing of Si properties’. Naturally, we are therefore open to
constructive arguments and to divergent opinions and hypotheses,
aimed at the improved understanding of the roles of Si in plants. In
this context, we expected that the Letter by Exley and Guerriero
would share in a spirit of collegial scholarly discourse. However, we
found the Letter to assume an unnecessarily critical tone while
propagating several misconceptions and producing only a small
number of substantive arguments.

Exley andGuerriero contend that the view that Si does not act as
an ‘active cellular agent’ had ‘previously not been explicitly
expressed’ by our research groups. For those readers unfamiliarwith
our work, notwithstanding the many conferences where we
expressed this view, our review charts out the progression of this
school of thought, from as early as 1992 to the present (Ch�erif et al.,
1992; Fawe et al., 1998; Fauteux et al., 2006; Chain et al., 2009;
Vivancos et al., 2015; Rasoolizadeh et al., 2018). Vivancos et al.
(2015), in particular, tested the hypothesis that silicic acid acts as an
intracellular signaling agent and definitively ruled this out. In
addition, as shown in Fig. 4 of our review, we have led the field in
using the latest molecular techniques to demonstrate the lack of an
intracellular biochemical role of Si in a variety of plant species (i.e.
Arabidopsis, wheat, and soybean).

Exley andGuerriero also contend that our ‘apoplastic obstruction
hypothesis’ lacks novelty and importance. It would seem this is
largely based on the authors’ confounding of the distinctions
between the ‘mechanical barrier hypothesis’ and the ‘apoplastic
obstruction hypothesis’. As we exposit in our Tansley review (see
Section IV), and in more detail later, the ‘mechanical barrier
hypothesis’, which proposes that silica deposits in the apoplast
impede the physical penetration of fungal pathogens from entering
cells, is a largely deposed model in this system (Yoshi, 1941; Liang
et al., 2005; Van Bockhaven et al., 2015). The ‘apoplastic

obstruction hypothesis’, by contrast, is a novel working model that
attempts to unify diverse strands of evidence from the scientific
literature by proposing Si’s prophylactic role stems from its
apoplastic presence obstructing, for example, signaling between
fungal/insect effectors and host receptors and apoplastic fluxes of
mineral toxicants. This is important and timely, since, as we note in
our Tansley review, many contemporary researchers in the Si
community are actively engaged in searching for a biochemical role
of Si.

Exley and Guerriero further claim that ‘much important past
and recent research [was] either inexplicably by-passed or not
appropriately cited’, suggesting that we may have overtly over-
looked studies because they were perceived as a ‘challenge’ to our
model. Our review has 177 references spanning close to eight
decades, already exceeding the typical 150 for a Tansley review, in
addition to over 100 references in the Supporting Information. As
any scientific author will attest, it is inevitable that some studies will
not be cited, especially considering that well over 1000 papers have
been published on Si and plant biology, as detailed in our
Introduction. In the context of our review, it was our opinion that
the issue of biosilicification was subsidiary to the four main areas of
contention we outlined surrounding Si’s biological role in plants.
Simply put, we are of the view that the presence of highly selective Si
transporters underlies the differences in Si accumulation observed
across species, whereas Exley and Guerriero are of the opinion that
biosilicification is of primary importance. The fact that we have a
difference of opinion does not mean, however, that the topic of
biosilicification was overlooked or related references were ‘by-
passed’. On the contrary, many noteworthy articles on this subject
were cited and discussed, including works by Hodson, Flowers,
Elbaum, Lux, Zhang, and indeed, Exley and Guerriero (Coskun
et al., 2019; references cited therein).

Exley and Guerriero claim that we, the authors of the Tansley
review, ‘for the first time in print to [their] knowledge’, agree that
(ortho)silicic acid (Si(OH)4) is the only bioavailable Si species,
coupled to a surprising comment about our ‘understanding of the
chemistry of silicon’ and their own discovery of this ‘sacred and
scientific truth’. Again, a closer reading of our collective works
easily dispels their notion. For instance, Ma et al.’s seminal work in
the discovery and characterization of Lsi1 and Lsi2 as Si(OH)4
transporters (Ma et al., 2006, 2007) demonstrates this understand-
ing, as do the numerous studies by our groups on Si transport and
accumulation. By contrast, Exley and Guerriero attempt to take
credit for this critical understanding by citing their own work,
overlooking decades of foundational work by others, many of
which we highlight in our Tansley review.

A special note on Guerriero et al. (2018) is warranted, as (1) the
authors give it much weight in their arguments, claiming that it
‘supersedes and augments’ our model, and (2) it was indeed, we
readily admit, not cited in our review. The reasons for this are as
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follows and pertain not to the chemistry of Si but to fundamentals
of plant pathology. In short, the scientific approach used in
Guerriero et al. (2018) violates numerous basic tenets of plant
pathology, which renders the conclusions with respect to the mode
of action of Si andbiotic stress deeplyproblematic. In their work, the
authors propose the ‘existence of a synergistic mechanical protec-
tion by callose and silica against pathogens in horsetail’ without
showing any direct interaction between these. Indeed, the model
rests on the serendipitous observation of a ‘fungal infection’ on
dying or highly stressed plants, without any attempt to identify the
fungus or to fulfill Koch’s postulates, the required procedure to
establish the pathogenicity of an organism. The most common
fungi reported on horsetail are Ascochyta equiseti (Polec &
Ruszkiewicz-Michalska, 2011) and Stamnaria personii (Haelewa-
ters et al., 2018), both of which are observed on dead or dying
material, which classifies their presence as saprophytic or oppor-
tunistic infections, as is the case in Guerriero et al. (2018), based on
their own Fig. 1 and description. In addition, there is no
inoculation treatment on either Si-supplied or -non-supplied
plants, rendering their claims of ‘investigating . . . resistant plants’
scientifically inaccurate. The final deficiency in their model is
presented in their Fig. 8, where, after describing (evidently
unbeknownst to them) a case of saprophytic fungal infection, they
propose a model whereby a haustorium, a fungal structure unique
to biotrophic pathogens attacking living tissues exclusively, is
involved. To date, no biotrophic pathogen has ever been reported
to attack horsetail. We refer the reader to Table 2 of our Tansley
review to appreciate the importance of this distinction. Based on
these inadequacies, the proposed model by Guerriero et al. (2018)
is not only incongruent with that proposed byCoskun et al. (2019),
but is flawed in its fundamental understanding of fungal pathogen
lifestyles, a point discussed at length in our review. Therefore, for
Exley and Guerriero to claim any precedence over our model based
on such work is unfounded.

Regarding the issue of describing Si-permeable aquaporins as
‘silicon transporters’, Exley andGuerriero engage in a simplematter
of semantics, despite the fact that ‘aquaporins’ are widely accepted in
the literature as transporters; indeed, any integral transmembrane
protein involved in the transport of substrates across membranes is a
transporter. Aquaporins, like any other class of membrane channels,
are thermodynamically passive transporters, not to be confusedwith
carriers or (primary/secondary) active transporters (White, 2012).
We have previously described that Si uptake is cooperatively
mediated by Lsi1, a passive channel-type transporter, and Lsi2, an
active transporter. Tomake such claims asExley andGuerriero have,
exposes some of their own basic misconceptions in the field of
transport physiology. Even the paper cited by the authors (Marron
et al., 2016), in support of their argument, describes Lsi1 and related
mammalian aquaporins as ‘passive transporters’, discrediting the
authors’ argument.Definitions aside, it is evident that the authors do
not acknowledge the importance of the selectivity filter of channels,
which bestows, in this case, aquaporins with a high level of
discrimination against various substrates, including water and Si
(Maurel et al., 2008; Hove & Bhave, 2011). The authors appear to
stand alone in their belief that water fluxes and transpiration dictate
Si absorption, and in their refusal to recognize the high degree of

selectivity of Lsi1, as well as Lsi2, in determining a plant’s ability to
absorb Si, in spite of all the evidence related to Figs 2 and 3 of our
Tansley review.

To Exley and Guerriero’s credit, we did incorrectly refer to
aluminum as a ‘heavy metal’, a term that is indeed used too
frequentlywith toomuch latitude in the biological literature.While
we thank them for bringing this to our attention (andhavemade the
necessary corrections), it is disappointing that they should seize on
such aminor oversight as an opportunity to denigrate the credibility
of the authors. In a further attempt todiscredit, Exley andGuerriero
claim that we ‘have little experience in silicon and abiotic stress’. Dr
Ma’s record as a leading expert in Si and aluminum biology and
abiotic stress is recognized worldwide (see for example, Ma, 2004;
Xia et al., 2010). Dr Kronzucker is also a world-renowned expert in
abiotic stress, with recent articles on Si and abiotic stress standing
out and being lauded as ‘paradigm-shifting’ by journal editors and
colleagues (Coskun et al., 2016; Flam-Shepherd et al., 2018; Santa-
Maria & Rubio, 2018). Typically, in our view, such ad hominem
assaults are counterproductive to scientific discourse.

In summary, it appears that Exley and Guerriero’s major
criticism of our Tansley review is based on a perceived lack of
appreciation of the process of biosilicification and of their work. As
we acknowledged here and in our Tansley review, biosilicification
remains an interesting, although scantly understood, phenomenon,
and we will continue to observe it closely. However, to afford it
primacy over all other aspects of Si biology would be undermining
the overwhelming evidence in support of the critical nature of the
selectivity of Si transporters in the plant kingdom.
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