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Summary

• Stimulation of potassium (K+) efflux by sodium (Na+) has been the subject of

much recent attention, and its mechanism has been attributed to the activities of

specific classes of ion channels.

• The short-lived radiotracer 42K+ was used to test this attribution, via unidirec-

tional K+-flux analysis at the root plasma membrane of intact barley (Hordeum

vulgare), in response to NaCl, KCl, NH4Cl and mannitol, and to channel inhibitors.

• Unidirectional K+ efflux was strongly stimulated by NaCl, and K+ influx strongly

suppressed. Both effects were ameliorated by elevated calcium (Ca2+). As well, K+

efflux was strongly stimulated by KCl, NH4Cl and mannitol , and NaCl also stimu-

lated 13NH4
+ efflux. The Na+-stimulated K+ efflux was insensitive to cesium (Cs+)

and pH 4.2, weakly sensitive to the K+-channel blocker tetraethylammonium

(TEA+) and quinine, and moderately sensitive to zinc (Zn2+) and lanthanum (La3+).

• We conclude that the stimulated efflux is: specific neither to Na+ as effector nor

K+ as target; composed of fluxes from both cytosol and vacuole; mediated neither

by outwardly-rectifying K+ channels nor nonselective cation channels; attributable,

alternatively, to membrane disintegration brought about by ionic and osmotic

components; of limited long-term significance, unlike the suppression of K+ influx

by Na+, which is a greater threat to K+ homeostasis under salt stress.

Introduction

Salinity, particularly in the form of dissolved NaCl, is a
widespread environmental problem, affecting nearly a bil-
lion hectares of land on earth, including > 20% of irrigated
agricultural areas (Munns, 2005; Ottow et al., 2005). One
of the most commonly observed consequences of NaCl
stress on glycophytic plants is a reduction in the tissue con-
tent of essential nutrient ions, notably potassium (K+)
(Helal & Mengel, 1979; Fricke et al., 1996). This reduction
can be caused by the inhibition, by sodium (Na+), of K+

influx into the cell (Kochian et al., 1985; Kronzucker et al.,
2006, 2008), but another potentially important cause is the
stimulation, by Na+, of K+ efflux from the cell. This
enhanced efflux has been observed many times, both by
direct observation of Na+-stimulated K+ release from plant
tissues (Nassery, 1975, 1979; Wainwright, 1980; Lynch &
Läuchli, 1984; Cramer et al., 1985) and algal cells (Katsu-
hara & Tazawa, 1986), and more indirectly through con-
ductivity analysis of electrolyte release (Lutts et al., 1996;

Kaya et al., 2002; Tuna et al., 2007). The agronomic
importance of Na+-stimulated K+ release from plant cells is
suggested by the inverse relationship between the extent of
release and the salt tolerance of a species or cultivar, which
may prove to be a valuable basis for crop screening (Nass-
ery, 1979; Chen et al., 2005; but see also Picchioni et al.,
1991; cf. Kinraide, 1999).

The mechanism(s) underlying this loss are poorly under-
stood, but a substantial amount of recent intracellular and
extracellular electrophysiological work (e.g. Shabala et al.,
2006) has led to a proposal that the phenomenon occurs
through a combination of ion-channel activities and
changes in the electrical potential gradient across the plasma
membrane. To briefly summarize this view, a Na+ challenge
in the external medium is thought to cause roots to take up
large quantities of the ion via nonselective cation channels
(NSCCs), resulting in a strong electrical depolarization at
the plasma membrane. Consequently, the role of K+ in
maintaining the cell’s electrical potential across the plasma
membrane comes into play, and voltage-regulated,
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outwardly-rectifying K+ channels (and ⁄ or outwardly-direc-
ted NSCCs) are theorized to open, resulting in K+ release
from the cell (Shabala et al., 2006).

In the present study, we have conducted the first detailed
examination of Na+-stimulated K+ efflux by use of radiotra-
cers. The principal advantage of this method lies in its ability
to identify unidirectional fluxes, in contrast to other meth-
ods (e.g. vibrating microelectrodes or chemical analyses)
which can only be used to determine net fluxes (Britto &
Kronzucker, 2003; see Discussion). Here, we have used trac-
ers and channel-modifying chemical agents to test the pro-
posal outlined above, against an alternative hypothesis that
osmotic and membrane-disintegrating effects constitute the
underlying mechanism of accelerated K+ release. In addition,
we have investigated short- and long-term effects of Na+ on
the unidirectional fluxes of K+, and on tissue ion content, as
well as the ionic specificity of the efflux-stimulation effect.

Materials and Methods

Plant culture

For all experiments, seeds of barley (Hordeum vulgare L. cv
Metcalfe) were surface-sterilized for 10 min in 1% sodium
hypochlorite and germinated under acid-washed sand for
3 d before placement in vessels containing aerated hydro-
ponic growth medium (modified ¼-strength Johnson’s
solution, pH 6.3–6.5) for an additional 4 d. The solution
was modified to provide three levels of calcium (Ca2+, as
CaCl2): 0.1 mm, 1 mm, and 10 mm. Nitrogen (N) and K
sources were NH4NO3 (0.5 mm) and K2SO4 (0.75 mm),
except for plants in which NH4

+ fluxes were measured; these
plants were provided with (NH4)2SO4 (5 mm) and K2SO4

(0.05 mm), to maximize internal NH4
+ pools (Britto et al.,

2001; Szczerba et al., 2008). Unless plants were grown
under the steady-state condition of 160 mm NaCl, NaCl
was not added to solutions until the time of experiment (day
7). Otherwise, plants were grown with 160 mm NaCl for
steady-state measurements. Solutions were exchanged every
2 d to prevent nutrient depletion. Plants were grown in
walk-in growth chambers under fluorescent lights with an
irradiation of 200 lmol photons m)2 s)1 at plant height,
for 16 h d)1 (Philips Silhouette High Output F54T5 ⁄
850HO, Philips Electronics Ltd., Markham, ON, Canada).
Daytime temperature was 20�C; night-time temperature
was 15�C, and relative humidity was c. 70%.

Flux analysis

Details of each flux-measurement protocol are given in the
following sections. The general features of protocols are as
follows: replicates consisted of bundles of five 1-wk-old
intact plants (except for those grown under 160 mm NaCl
with low and intermediate Ca2+; in this case, 15 plants were

bundled because of low biomass), held together at the shoot
base by a plastic collar. Plant bundling was prepared 1 d
before experimentation. Roots of intact plants were loaded
in complete nutrient solutions containing either the radio-
tracer 42K (t1 ⁄ 2 = 12.36 h; as K2CO3), provided by
McMaster University Nuclear Reactor, in Hamilton (ON,
Canada), or the radiotracer 13N (t1 ⁄ 2 = 9.98 min; as
13NH4

+), provided by the CAMH cyclotron facility (Uni-
versity of Toronto, ON, Canada). Radioactivity from elu-
ates, roots, shoots, and centrifugates was counted, and
corrected for isotopic decay, using two gamma counters
(PerkinElmer Wallac 1480 Wizard 3’’(Turku, Finland) and
Canberra-Packard, Quantum Cobra Series II, model 5003
(Packard Instrument Co., Meriden, CT, USA)). For com-
parison charts of 42K+ efflux, the specific activities of all
replicates were normalized to 2 · 105 cpm lmol)1.

Compartmental analysis for K+ fluxes and pool
sizes Compartmental analysis by tracer efflux was used to
measure subcellular fluxes and compartmental concentra-
tions of K+, based upon a three-compartment model of sur-
face film, cell wall, and cytosol as revealed by short-term
labeling (briefly described here; for details see Pierce &
Higinbotham, 1970; Walker & Pitman, 1976; Memon
et al., 1985; Lee & Clarkson, 1986; Siddiqi et al., 1991;
Kronzucker et al., 1995, 2003). Labeling of plants via the
roots took place for 1 h in radioactive nutrient solutions,
which were chemically identical to growth solutions.
Labeled seedlings were attached to plastic efflux funnels,
and roots were eluted of radioactivity with a series of 13-ml
aliquots of nonradioactive desorption solutions (identical to
growth solutions in the steady-state runs; see below). The
desorption series for K+ fluxes was timed as follows, from
first to final eluate: 15 s (four times), 20 s (three times),
30 s (twice), 40 s (once), 50 s (once), 1 min (23 times),
1.5 min (three times), 2 min (three times), 3 min (three
times), 4 min (twice), and 5 min (once), for a total of 1 h
of elution. Nonsteady-state experiments contained addi-
tional solutes (see the Results section for specific treatments)
in the final 23 or 24 vials (applied at elution time t = 15.5
or 16.5 min).

Linear regression of the function loge Uco(t)* = loge

Uco(i)* ) kt, in which Uco(t)* is tracer efflux at elution time
t, Uco(i)* is the initial tracer efflux, and k is the rate constant
describing the exponential decline in tracer efflux, obtained
from the slope of the rate of tracer release from the slowest-
exchanging, cytosolic, compartment (Kronzucker et al.,
2003) was used to resolve unidirectional influx and efflux of
K+, net flux, and the size and turnover rate of the cytosolic
K+ pool. Unidirectional K+ efflux was determined from
Uco(i)*, divided by the specific activity of the cytosol (Scyt) at
the end of the labeling period; Scyt was estimated by using
external specific activity (So), labeling time t, and the rate
constant k, which are related in the exponential rise func-
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tion Scyt = So(1–e)kt) (Walker & Pitman, 1976). Net K+

flux was found using total plant 42K retention after desorp-
tion, and unidirectional K+ influx was calculated from the
sum of net flux and influx. Cytosolic [K+] ([K+]cyt) was
determined using the flux turnover equation, [K+]cyt = X
Uoc ⁄ k, where X is a proportionality constant correcting for
the cytosolic volume being c. 5% of total tissue (Lee &
Clarkson, 1986; Siddiqi et al., 1991)

NH4
+ efflux The NH4

+ efflux experiments followed a pro-
tocol identical to the previous one with a few exceptions
related to the much faster radioactive decay rate (9.98 min
vs 12.36 h). The roots of intact plants were loaded for
30 min instead of 1 h. The desorption series for nitrogen
fluxes was timed as follows: 15 s (four times), 20 s (three
times), 30 s (twice), 40 s (once), 50 s (once), 1 min (five
times), 1.25 min (once), 1.5 min (once), 1.75 min (once)
and 2.0 min (eight times) for a total elution period of
30 min. Desorption solutions were identical to the growth
solution for the first 17 vials, but 160 mm NaCl was added
to the last nine vials (applied at t = 13 min). No steady-
state experiments were carried out for NH4

+ efflux and,
thus, compartmental analysis was not undertaken with this
procedure.

Short-term K+ influx Short-term labeling with 42K+ was
used to study the effects of exogenously applied NaCl and
Ca2+on K+ influx, under steady-state and nonsteady-state
conditions (Szczerba et al., 2008). For steady-state measure-
ments, seedlings were grown as described earlier, but with
160 mm [Na+]ext and either 0.1 or 1 mm Ca2+. Bundles of
seedlings were pre-equilibrated for 5 min in growth solu-
tion, then roots were immersed in labeling solution (identi-
cal to the growth solution, except that it contained 42K+)
for 5 min. Plants were then transferred to nonradioactive
solution for 5 s to reduce tracer carry-over to the desorption
solution, and finally desorbed for 5 min in fresh nutrient
solution. All solutions were chemically identical to the
growth medium. Nonsteady-state experiments were con-
ducted in the same way, with some exceptions. Plants were
grown with 1.5 mm [K+]ext, and 0.1 mm [Ca2+]ext, and the
pre-equilibration, labeling, and desorption solutions were
all different from the growth medium in that they con-
tained 160 mm NaCl and one of three external [Ca2+] pro-
visions (0.1, 1, or 10 mm).

Tissue analyses

K+ content To measure tissue K+ content of steady-state
plants, roots of a bundle of 5 1-wk-old barley seedlings were
first desorbed in 10 mm CaSO4 for 5 min, to release extra-
cellular K+. Shoots and roots were then separated and
weighed. Tissue was then oven-dried for 3 d at 85–90�C,
and then reweighed. The dried tissue was pulverized, then

digested with 30% HNO3 for an additional 3 d. The K+

concentrations in tissue digests were determined using a sin-
gle-channel flame photometer (Digital Flame Analyzer
model 2655-00; Cole-Parmer, Anjou, QC, Canada). Non-
steady-state plants were analysed for tissue K+ content in a
similar manner, except that the seedlings were subjected to
salt stress for various periods of time (see the Results sec-
tion) before analysis.

Tissue NH4
+ content To measure tissue NH4

+ content,
barley seedlings were harvested and desorbed as described
earlier. Roots were excised and weighed, then transferred to
polyethylene plastic vials and frozen in liquid N2 for storage
at )80�C. Approximately 0.5 g of root tissue was homoge-
nized under liquid N2 using a mortar and pestle, followed
by the addition of 6 ml of formic acid (10 mm) for NH4

+

extraction. Subsamples (2 ml) of the homogenate were cen-
trifuged at 17 000 · g at 2�C for 25 min then transferred
to 2 ml polypropylene tubes. The resulting supernatant was
analysed using the indophenol colorimetric (Berthelot)
method to determine tissue NH4

+ content, as described in
detail elsewhere (Solorzano, 1969; Husted et al., 2000).
Briefly, three solutions were combined with 1.6 ml of tissue
extract: 200 ll of 11 mm phenol in 95% (v : v) ethanol;
200 ll of 1.7 mm sodium nitroprusside (prepared weekly);
and 500 ll of solution containing 100 ml of 0.68 m triso-
dium citrate in 0.25 m NaOH with 25 ml of commercial
strength (11%) sodium hypochlorite. The color was
allowed to develop for 60 min at room temperature (25�C)
in the dark, and sample absorbance was measured at
640 nm).

Results

Fig. 1 shows the changing rate of 42K+ efflux (Lee & Clark-
son, 1986) from labeled roots of intact barley seedlings,
before and following the imposition of NaCl treatments. A
substantial, concentration-dependent stimulation of 42K+-
labeled efflux was observed in response to three levels of salt
stress (40, 80 and 160 mm NaCl) that were imposed mid-
way through the experiment, once the cytosolic phase of
efflux was well established (Fig. 1a; Kronzucker et al.,
1995, 2003). After c. 45 min, the stimulation of 42K+ efflux
responded roughly linearly to the NaCl concentration.
Increased concentrations of CaCl2, applied at the time of
salt stress, strongly reduced the stimulation of K+ efflux
(Fig. 1b), with 10 mm Ca2+ lowering K+ efflux to control
(unstressed) levels within as little as 20 min. By contrast, in
the absence of NaCl stress, a 100-fold variation in Ca2+sup-
ply ([Ca2+]ext) had no discernable effect on K+ efflux
(Fig. 1b).

In contrast to the elevated efflux in Fig. 1 (but acting
upon the net flux in the same way), a strong, rapid inhibi-
tion of K+ influx was seen in the presence of 160 mm Na+,
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as determined by short-term influx measurements (Fig. 2).
This effect was also substantially reduced by increasing
[Ca2+]ext. However, the inhibition pattern was complicated
by the observation that increased Ca2+also stimulated K+

influx in the absence of NaCl. Nevertheless, the per cent
suppression of K+ influx by NaCl tended to decrease as
[Ca2+]ext was increased from 0.1 to 1 to 10 mm (by 59%,
28%, and 27%, respectively), and 10 mm [Ca2+]ext (with
160 mm NaCl) restored K+ influx to control levels (i.e.
0.1 mm [Ca2+]ext without NaCl treatment).

Steady-state unidirectional flux measurements were
made, by use of compartmental analysis, on plants grown
for 4 d on 160 mm NaCl. These experiments showed that
the effects of Na+ on K+ fluxes are long-lasting (Fig. 3a),
with plants taking up K+ at rates even lower than seen with
short-term NaCl treatment (Fig. 2). When [Ca2+]ext was
low (0.1 mm), K+ influx was approximately one-third of
that in plants grown under no salt stress (Fig. 3a). These
absolute and relative rates were confirmed by direct, short-
term influx measurements (not shown). Unidirectional K+

efflux also remained elevated under long-term NaCl provi-
sion, except at the highest [Ca2+]ext. The enhanced K+ influx
seen in the short term with 10 mm [Ca2+]ext under salinity,
relative to the salt-free, low-Ca2+controls (Fig. 2), however,
was not found under steady-state conditions, but the net
flux of K+ was slightly improved by increasing [Ca2+]ext

from 0.1 mm to 1 or 10 mm (Fig. 3a).
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In parallel with the changes in influx, the steady-state
cytosolic concentrations of K+ ([K+]cyt) were also suppressed
by NaCl stress (Fig. 3b). These concentrations, determined
by compartmental analysis, are in excellent agreement with
a host of other methods (Kronzucker et al., 2003), as is the
suppressive effect Na+ (Kronzucker et al., 2008). Increasing
[Ca2+]ext from 0.1 mm to 1 mm brought about a slight
increase in [K+]cyt. In the absence of NaCl, the influx, net
flux, and cytosolic pools of K+ all increased with increasing
Ca2+supply (Fig. 3a,b).

We tested a range of channel inhibitors on K+ efflux,
applied at the time that NaCl stress was imposed (Fig. 4).

Of these, only the NSCC blocker zinc (Zn2+, Fig. 4c) and
the NSCC and K+-channel blocker lanthanum (La3+,
Fig. 4f) substantially reduced the Na+-stimulation of K+

efflux, although at 10 mm neither of these agents was as
effective as Ca2+, which completely suppressed the stimula-
tion within 20 min (Fig. 1b). Application of the K+-chan-
nel blocker tetraethylammonium (TEA+, Fig. 4a) and the
NSCC blocker quinine (Fig. 4d) brought about slight
reductions of the stimulated efflux, while the K+ channel
blocker cesium (Cs+, Fig. 4b) was completely ineffective in
changing the pattern of K+ loss. In addition, increasing the
external [H+] to a pH of 4.2, known to inhibit NSCCs
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(see the Discussion section) had no discernable effect
(Fig. 4e).

The effects of the K+-channel-blocking agents TEA+ and
Cs+ on the steady-state efflux of K+ were also examined
under low-K+ (0.1 mm) conditions, in the absence of salt
stress (Fig. 5). These experiments were conducted to dem-
onstrate the efficacy of the channel blockers, under condi-
tions where K+ efflux is known to be passive (Kochian &
Lucas, 1993; Maathuis & Sanders, 1993, 1996; Szczerba
et al., 2006). Both agents were found to substantially
inhibit K+ efflux immediately upon their application at
10 mm, unlike elevated Ca2+which had no such effect
(Fig. 1b).

Fig. 6 shows that NH4
+, mannitol and K+ itself can stim-

ulate K+ efflux. In particular, the K+ efflux pattern observed
after KCl application was virtually identical to that observed
after NaCl application, and K+ efflux responded to KCl in a
concentration-dependent manner (Fig. 6a). The 160 mm

NH4Cl treatment was nearly as effective as 160 mm NaCl
(Fig. 6b), while an iso-osmotic concentration of mannitol
(320 mm) transiently stimulated K+ efflux to a similar
extent before approximating control levels after 45 min of
treatment (Fig. 6c). Application of 160 mm mannitol also
brought about a mild, short-lived, stimulation of K+ efflux
(Fig. 6c).

Tissue K+ analysis (Fig. 7a) shows that the unidirectional
efflux stimulated by NaCl was a net efflux, entailing rapid
and massive loss of potassium from the root over the first
2 h (at a rate of c. 25 lmol g)1 FW h)1), with a lesser
depletion from the shoot (c. 12 lmol g)1 FW h)1). Appli-
cation of 1 mm Ca2+curtailed the NaCl-induced loss of K+

from roots by c. 50% over 24 h (not shown). After the first
2 h of NaCl treatment, net K+ loss from both organs was
substantially reduced (Fig. 7a), but plants after 4 d of NaCl
treatment had even lower K+ status, particularly in the root,

which had only 5% as much K+ per gram compared with
control roots (Fig. 7b).

Using the short-lived radiotracer 13N, we found that
NaCl provision could also immediately stimulate NH4

+

efflux (Fig. 8) in plants grown on 10 mm NH4
+. This

enhancement was less than what was seen with K+ efflux. In
parallel, tissue NH4

+ analysis showed that longer-term
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NaCl application brought about almost complete NH4
+

loss from root tissue, at a rate of 1–1.5 lmol g)1 FW h)1

over the first 2 h (Fig. 8, inset). The pattern in the decline

of tissue NH4
+ resembled that of tissue K+ decline in that

the majority of loss occurred within 2 h.

Discussion

The present demonstration is one of the few detailed studies
that use radiotracers in the context of Na+-stimulated K+

efflux. In addition to being the only available means by
which unidirectional fluxes can be quantified, the use of
tracers offers several other advantages over net flux measure-
ment by use of extracellular microelectrodes, the leading
method by which this phenomenon is currently under
investigation. First, it provides a comprehensive view of ion
fluxes for the whole root, rather than individual microscopic
zones that can vary substantially in their transport character-
istics (Garnett et al., 2001; Vallejo et al., 2005). This is
important if one seeks to gauge the impact of Na+-stimu-
lated K+ release upon the K economy of the whole plant,
and, consequently, its performance in the field. Second, tra-
cer analysis as presented here entails no problem relating to
ion selectivity, unlike with the use of electrode cocktails
(Cuin et al., 1999; Britto & Kronzucker, 2003). Third, it
allows for very sensitive measurements to be made even in
the presence of high concentrations of the traced ion. With
the use of microelectrodes or more traditional depletion
experiments, this background interference issue often
requires that the external concentration of the ion of interest
is lowered well below that provided during growth (Shabala
et al., 2006). Thus, the starting condition for measurement
is often an aberrant one, entailing net nutrient loss from the
plant, before any experimental treatment (Shabala et al.,
2005, 2006; Sun et al., 2009). In addition, extracellular mi-
croelectrodes sometimes yield unexplained anomalies, such
as a large and sustained net efflux of Na+, paradoxically sug-
gesting that the plant cumulatively releases more Na+ than
it takes up (e.g. Fig. 5 in Shabala et al., 2006). The conse-
quences of this net efflux on membrane electrical polariza-
tion also require consideration.

In the present study, unidirectional K+ efflux (Fig. 1a)
and influx (Fig. 2) responded immediately to the imposi-
tion of salt stress, an enhancement and a diminishment,
respectively, that were both strongly attenuated by increased
external Ca2+ (Figs 1b,2). Steady-state K+ influx and cyto-
solic K+ concentrations averaged throughout the root, were
also reduced by salt stress, and, again, Ca2+ameliorated
these effects (Fig. 3). Together, these data show that Na+

disrupts K+ homeostasis by increased loss, reduced uptake,
and reduced cytosolic pools, of K+, and that improved
Ca2+supply can significantly counteract all three effects,
underscoring the crucial role of Ca2+in protecting plants
from salt stress (Marschner, 1995; Cramer et al., 1985;
Rengel, 1992).

How does Ca2+prevent massive K+ release from the cell
under salinity stress? Shabala et al. (2006) have argued, on
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the basis of intra- and extra-cellular microelectrode mea-
surements, that K+ loss in Arabidopsis root and mesophyll
tissue is initially brought about by a large, depolarizing
inward flux of Na+ across the plasma membrane. This trig-
gers depolarization-activated channels (DAPCs) and ⁄ or
NSCCs which are proposed to mediate the observed
enhancement of K+ efflux. Elevated Ca2+is proposed to
counteract this process via its channel-blocking characteris-
tics, inhibiting the influx of Na+ through NSCCs, or the
efflux of K+ through DAPCs ⁄ NSCCs, or both.

While many reports using patch-clamp methodology
have indeed shown that Na+ currents into the cell can be
blocked by elevated Ca2+, these blocks are usually only par-
tial (Roberts & Tester, 1997; Tyerman et al., 1997; Daven-
port & Tester, 2000; Demidchik & Tester, 2002). In
addition, radiotracer measurements have shown that, in
many instances, Ca2+addition does not abolish unidirec-
tional Na+ influx but permits a substantial Ca2+-indepen-
dent flux to proceed (Epstein, 1961; Rains & Epstein,
1967; Jacoby & Hanson, 1985; Cramer et al., 1985, 1987,
1989; Davenport et al., 1997; Essah et al., 2003). In our
previous work, Ca2+provision had no effect whatsoever on
Na+ influx (Malagoli et al., 2008); similarly, Cramer et al.
(1987) concluded that Ca2+had little or no influence on the
low-affinity Na+ transport system in cotton seedlings, which
catalysed the majority of the influx. In a study on Arabido-
psis, elevated Ca2+was observed to increase Na+ influx when
it had been partially inhibited by other agents (Essah et al.,
2003). Lastly, in a recent review (Zhang et al., 2009), it was
pointed out that, in most soils, Ca2+is sufficiently high as to
make the Ca2+-inhibitable Na+ flux (i.e. through NSCCs)
largely irrelevant to most field conditions, including, in par-
ticular, saline soils (Zidan et al., 1991; Garciadeblas et al.,
2003). This would lessen the agronomic importance of its
protective effects.

The blockade of K+ efflux by extracellular Ca2+is also not
well established in the electrophysiological literature, from
which examples can be readily drawn of Ca2+-independent
K+ flux from the cell (Vogelzang & Prins, 1994; Roberts &
Tester, 1995; White & Lemtiri-Chlieh, 1995). The lack of
a strong effect of Ca2+on K+ efflux in a whole-root context
is also apparent in the present study, both in the short term
(Fig. 1b), in which a 100-fold variation in Ca2+showed no
change in K+ efflux when NaCl was absent, and under
steady-state conditions (Fig. 3a). Moreover, under NaCl
stress, our tracer efflux plots still show substantial 42K+

release at elevated Ca2+, which in no case was reduced below
control levels (Fig. 1).

Taken together, the present results, and the precedents
cited, cast doubt on the recent proposal (Shabala et al.,
2006) that Na+-stimulated K+ efflux is essentially a channel-
mediated process. At the very least, it does not appear to be
a universal explanation for an apparently ubiquitous phe-
nomenon. In addition, crucial to the channel mediation of

these fluxes is a rapid depolarization of the plasma-mem-
brane electrical potential by Na+, which, however, is not
always observed (Bowling & Ansari, 1971, 1972; Cheese-
man, 1982; Nocito et al., 2002).

Other results obtained in the present study are also at
odds with this interpretation. 42K+ experiments conducted
with a range of channel inhibitors show that they have
rather limited effects on salt-stimulated K+ efflux (Fig. 4).
In particular, the K+-channel blockers TEA+, Cs+, and the
NSCC blocker Zn2+, changed the pattern of efflux very lit-
tle, whereas the nonselective cation channel blocker qui-
nine, the broad spectrum blocker La3+, as well as low
external pH (4.2), which has been shown to reduce NSCC-
catalysed Na+ fluxes (Demidchik & Tester, 2002), also had
little effect. By contrast, in the absence of salt stress, and
under conditions where K+ efflux is passive and probably
channel-mediated (0.1 mm [K+]ext), Cs+ caused a pro-
nounced inhibition of steady-state K+ efflux, as did TEA+,
but to a lesser extent (Fig. 5). This indicates that, with our
experimental system, we can indeed measure such effects,
where present. The relative effectiveness seen with these
channel-blocking agents in the absence of NaCl is in agree-
ment with a large body of electrophysiological studies (for a
review see White & Broadley, 2000).

An alternative explanation for the phenomenon was pro-
vided by Cramer et al. (1985), who interpreted the stimula-
tion of K+ efflux by sodium as an outcome of the
displacement of Ca2+from the plasma membrane, resulting
in a loss of structural integrity of the membrane and an
increase in its leakiness (Frota & O’Leary, 1973; Lynch
et al., 1987; Kinraide, 1999; Rengel, 1992; for evidence of
strong competition between Na+ and Ca2+for binding to
the cell wall see Stassart et al., 1981). This interpretation
explains why the efflux-acceleration effect can be amelio-
rated by increased Ca2+provision, and is supported by
extensive research on the critical involvement of Ca2+in
membrane stability and permeability (Marinos, 1962;
Gary-Bobo, 1970; Clarkson, 1974; Mansour, 1997;
Hepler, 2005; Rengel, 1992; Van Steveninck, 1965).
Indeed, such effects of Ca2+can be observed even in simple
synthetic membranes of cephalin or lecithin, free of
proteinaceous transporters (Gary-Bobo, 1970; Levine et al.,
1973). The ‘classical’ explanation of the role of Ca2+in pre-
venting or reducing Na+-stimulated K+ efflux by increasing
membrane stability may also help explain the effects of
Zn2+and La3+shown in Fig. 4(c,f). Several studies have
shown that these ions can mimic Ca2+with respect to its
membrane-stabilizing characteristics, including improving
the membrane’s ability to restrict K+ loss (Poovaiah &
Leopold, 1976; Pinton et al., 1993; Cakmak & Marschner,
1988). In one study on membrane permeability effects of
polyvalent cations, it was concluded that La3+can indeed be
more effective than Ca2+in preventing membrane leakiness
to solutes (Poovaiah & Leopold, 1976).
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In the present work, the stress counteracted by Ca2+and
other polyvalent cations is clearly not ion-specific. As shown
in Fig. 6, both NH4

+ and K+ itself can produce enhance-
ments of unidirectional K+ efflux that are, at least initially,
indistinguishable from the effect produced by equimolar
Na+. Subsequent small deviations from the Na+-induced
efflux trace may reflect a stronger displacement of Ca2+for
binding sites by Na+, relative to the other ions (Stassart
et al., 1981). Particularly interesting is the stimulation by
external K+ of its own efflux from the cell (Fig. 6a); in this
situation, even a dramatic depolarization of the membrane
by K+ influx is highly unlikely to shift the electrochemical
potential gradient in favour of passive K+ efflux; given a typ-
ical cytosolic [K+] of c. 100 mm and external [K+] of 80 or
160 mm (Kochian & Lucas, 1993; Maathuis & Sanders,
1993; Walker et al., 1996; Fig. 3b). This result is further
evidence to support the idea that the stimulated efflux of K+

is not primarily channel-mediated, as this would require an
outwardly directed gradient to sustain a net efflux, but can
instead be attributed to disruptions in membrane integrity.

The observation that mannitol induces K+ efflux (Fig. 6c)
also strongly suggests that osmotic stresses are at least par-
tially responsible for the observed enhancements of K+

efflux. While this finding contradicts that of Shabala et al.
(2006), who, it should be noted, used mannitol at concen-
trations hypo-osmotic to comparative Na+ treatments, it is
in agreement with many other studies showing increased K+

efflux, or decreased K+ retention, upon application of non-
ionic osmolytes (Sutcliffe, 1954; Greenway et al., 1968;
Dessimoni Pinto & Flowers, 1970; Smith et al., 1973;
Nassery, 1975, 1979; Cramer et al., 1985). However, in the
present study, mannitol was not as effective as NaCl in sus-
taining the stimulated K+ efflux (as also seen by Nassery,
1975, 1979), indicating that there may be both osmotic
and ionic components to the stimulatory stress, just as there
are both osmotic and ionic components responsible for salt
injury to plants (Munns & Tester, 2008). The osmotic
component of the efflux-stimulating effect is likely to be
related to membrane disintegrity caused by osmotically dri-
ven water loss from the cell. Indeed, Sutcliffe (1954) found
that K+ loss from osmotically stressed beetroot discs only
occurred once the osmotic potential of the medium was
more negative than that of the tissue (i.e. once ‘incipient
plasmolysis’ had been achieved). From this point of view,
the slight protection against K+ loss afforded by treatment
with TEA+ in the present study, and the more pronounced
effect of TEA+ found by Shabala et al. (2006), might be
explained by its blockage of aquaporins (Detmers et al.,
2006) and a subsequent reduction of cellular dehydration –
an alternative to the explanation that TEA+ may block
channel-meditated K+ efflux (Shabala et al., 2006). It is
instructive in this context to examine Fig. 5, which shows
that K+-channel inhibition by TEA+ is only partial (also
White & Broadley, 2000), compared with the effect of Cs+

which, nevertheless, had no effect on the Na+-stimulated
efflux.

Superimposed upon the osmotic stress appears to be an
ionic stress which sustains the enhancement of K+ efflux
above that brought about by mannitol. As discussed earlier,
this may be caused by the loss of Ca2+associated with the
plasma membrane by ion exchange with elevated amounts
of external cations, which leads to greater compromise of
membrane integrity. However, it must be reiterated that
these ionic effects are not specific to Na+, but can be
brought about by NH4

+ or K+ itself (Fig. 6; Okamura &
Wada, 1984). The efflux of K+ is not the only process that
is affected: we have found that NaCl provision also acceler-
ates the efflux of NH4

+, as traced by the short-lived radio-
isotope 13N (Fig. 8). This increase, however, was not as
pronounced as the efflux of K+, possibly because NH4

+

efflux under these conditions (10 mm external [NH4
+]) is

known to already be extremely high in barley roots, nearly
equalling the high values of NH4

+ influx in a futile trans-
port cycle (Britto et al., 2001). When examined over a
longer time-scale, and at the level of tissue ion content, it
can be seen that NH4

+ is readily lost from the root (Fig. 8,
inset), in a pattern resembling that of K+ loss (Fig. 7a). This
suggests that, in addition to accelerating NH4

+ efflux, Na+

may suppress the influx of NH4
+. The losses of NH4

+ and
K+ are in agreement with other studies showing that NaCl
treatment enhances the release of a wide range of materials
from the plant cell, including chloride (Sun et al., 2009),
ureides (Mansour, 1995), surface proteins (Maas et al.,
1979) and UV-absorbing compounds, including nucleo-
tides, phenylpropanoids and flavonoids (Rauser & Hanson,
1966; Leopold & Willing, 1984; Redmann et al., 1986;
Picchioni et al., 1991). Moreover, a similarly wide range of
materials has also been shown to be released from plant cells
in response to nonionic osmotica or drought stresses
(Greenway et al., 1968; Resnik & Flowers, 1971; Krishna-
mani et al., 1984). In some of these studies, additional
Ca2+provision was shown to moderate these diverse losses
(Rauser & Hanson, 1966; Leopold & Willing, 1984; Pic-
chioni et al., 1991; Mansour, 1995). In summary, the like-
lihood is low that all of these simultaneously occurring
fluxes are mediated by ion channels; a more parsimonious
explanation is that a generic, calcium-relieved disruption in
membrane integrity is brought about by osmotic and ionic
components of salt stress.

An interesting methodological consequence of the dis-
ruption of membrane integrity by NaCl is that membrane
transporters may no longer dictate ion fluxes into and out
of the cell over this time-scale, and a very rapid, futile cycle
that bypasses the membrane could result. Thus, the reduced
K+ influx observed in response to sudden NaCl provision
(Fig. 2) may be greatly underestimated owing to simulta-
neous leakage from the cell, and the measured flux would
then represent a reduced net accumulation of K+. The
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observation that K+ efflux under steady-state salinity is
much reduced compared with that seen upon sudden NaCl
application, however, suggests that significant recovery in
membrane integrity occurs in the long term, which can be
at least in part explained by changes in lipid composition
(López-Pérez et al., 2009).

In addition to examining the immediate effects of Na+ on
the release of K+ from the cell, and with the agronomic sig-
nificance of K+ homeostasis in mind, it was of considerable
interest to investigate Na+–K+ interactions in the longer
term. Fig. 7(a) shows the loss of K+ from roots and shoots
over 24 h following salt treatment, and indicates that,
within the first 2 h, root K+ loss is c. 25 lmol g)1 FW h)1.
Given that cytosolic [K+] is c. 100 mm or less (Fig. 3b;
Walker et al., 1996), which translates into c. 5 lmol cyto-
solic K+ per gram tissue (assuming that tissue is isopycnic
with water and cytosolic volume is 5% of tissue volume) an
efflux of 25 lmol K+ g)1 FW h)1 would deplete the cyto-
solic pool within 12 min, and would rapidly begin to draw
upon vacuolar resources. Thus, changes in permeability at
the plasma membrane, regardless of mechanism, are evi-
dently accompanied by changes in tonoplast permeability (a
situation likely to occur in the mobilization of NH4

+ also
demonstrated here; Fig. 8, inset). The mechanism(s) under-
lying this mobilization process are clearly important, and
require investigation.

It is evident from Fig. 7(b) that in the steady state, tissue
K+ values are even more severely affected by Na+ stress than
over the first 24 h of stress. Steady-state tracer analyses of
K+ fluxes in the inward and outward directions (Fig. 3a)
show that K+ efflux increased with long-term Na+ provision,
except at the highest Ca2+supply, and K+ influx, as well as
the ratio of influx to efflux, decreased in all cases. It is note-
worthy that the absolute decline in K+ influx was substan-
tially greater than the absolute increase in K+ efflux, which
suggests that, of the two, K+ influx is the more important
component in the disruption of cellular K+ homeostasis by
Na+, and as such might be a more accurate predictor of Na+

tolerance among cultivars or species (Nassery, 1979; Chen
et al., 2005). This is underscored by observations that Na+-
stimulated K+ efflux is all but eliminated by high external
[Ca2+], both in the short term (Fig. 1b; Shabala et al.,
2006) and in the steady state (Fig. 3a), while the apparent
influx of K+ remains suppressed by Na+ over short and long
time-scales (Figs 2,3a). Given that soluble soil Ca2+tends to
be at similarly high levels in saline soils (typically 15 mm;
Zidan et al., 1991), K+ efflux may thus not play a broadly
significant role in K+ homeostasis in the short or long run.
Nevertheless, examination of the relative size of the Na+-
stimulated K+ efflux, regardless of mechanism, may yet be
of diagnostic value with respect to a plant’s ability to with-
stand sudden osmotic and ionic stresses and may, thus, pro-
vide some insight into inherent salt stress tolerance among
cultivars.
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